Ha

en Hainaut

Travail de fin d’études

Les différentes facettes du framework
Nuxt.js

Présenté par

Wambe Thomas

En vue de 'obtention du grade de
Bachelier en Informatique et Systemes

finalité Informatique Industrielle

Année Académique 2020-2021

2
Al
Z4

S

== oY ConsRaves TECHNIQUE
- R {0318 AND REFORMISTS

Parlement européen /T

Remerciement
Je tiens a les remercier pour leurs conseils et leur aide précieuses :

Mesdames :

e Bandinu Louna
e Desurpalis Nicole
e Lechien Zazie

Messieurs :
e Jadoul Philippe
e Ledru Robinson
e Michaux Bertrand
e Saldic Dzafer
e Smolders Laurent
e Wambe Patrick

Ainsi que :

e Le groupe politique ECR pour m’avoir donné I'opportunité d’effectuer mon stage en son
sein.

e |’ensemble du corps enseignant de I’'HELHa de Charleroi m’ayant suivi de pres ou de loin
dans mon parcours.

Abstract

During my last year of Bachelor in informatics, | had the opportunity to participate to a 15-
weeks internship in a company.

This company is the ECR group, one of the many political groups of the European
Parliament.

The purpose of this internship was to develop an application to test the abilities of a new
technology known as Nuxt.js.

The goal was reached and | was able to develop a website dealing with public data of ECR
deputies.

In order to do this, | had to use known technical concepts learned in school, study unknown
concepts and apply them in the ‘real working environment’.

This final project will describe in detail all the steps needed to achieve a working application,
which will serve as a foundation for further developments.

Finally, those 15 weeks have proven me that this kind of development project was well
within my reach and that | was technically competent to deal with it.

| hope that reading this will be as interesting for you as it was for me writing it.

Table des matieres

1 o Yo 1F o o o T o 1 1
2.Présentation de I’'entrepriseccceeiiieeiiieeiiiiicirieicreeccrenereneeesennesennes 2
2.1.Le Parlement @UIOPEENceiiiiiiirennnniiieiniiiitennssssssssiiinessssssssssssssssssssssssssssss 2

2.2.Le Zroupe ECR....cceuuiiieiiiiiiiiiiiiiinisi s rees s ree e rs e sses s s s a s ena s s s asenansans 4
3.Présentation du Stage.......cceciiieeiiiieiiiiniiiicrrc e e e s e e s e nees 6
3.1 INTrOAUCLION .cceveeiiiiiiiiiiiieneeiiiciiiiinsennsseenienersasssssssesssteessnsssssssssssssssnnssssssnss 6

3.2.Différents concepts techniques abordés lors du stagecccceeeeerrerenccrnenannns 6

3000 T - I I PSR 6

3.2.2.Single Page Application........cccoviieeeeeiii i 14

3.2.3.Document Object Modelcccvviieeeeiiiiiecieeeeee e 15

T] =X © RS 16

R T NI) GO PO TR PPPPPR 17

e - =T 4 Vo L= T V- PP 19

e T T [N oY 1¥ o1 o o F SRR 19

3.3.2.5tatiCc RENAEIING ..uviiiiieiee ettt e e e e e e e 19

3.3.3.Server Side ReNdering........cccccuiiiieeiiii et 22

3.3.4.Client Side RENdEriNG......cccccuiiiiiiieeeeee et 25

3.3.5.Universal RENAEIiNG......cccooiiiiiiiiieieeee et 29

3.3.6.Static, Server Side, Client Side ou Universal Rendering? 34

3.4.Présentation de NUXL.JS .cccccciiiiiiiiiiiemmiiiiiiiiiiieemneiiiiiiiiieesssssssiinninnssssssssses 35

T - T 1 VZ T e [P 36

3.6.Projet de Stageccoiiiiieeenniiiiiiiiiinenneiiiiiiiineeenneeisisinnseesssssssssssssssssnnanssnns 37

3.6.1.Serveur Node.js / BaCk-ENd........ccceereeeiiiiieeeiiiee e e 38

3.6.2.Single Page Application / Front-Endccccoeovieieiniiiineeecieee e, 40

3.6.3.Affichage des Cartes......ccouvicciiiiiieieeeee e 41

3.6.4.Page « dETAilS M ..uuveieeeieeeieeeccciiitee e e 45

3.6.5.Barre de Navigation........ccocccciiiiiiieie e 47

3.6.6.Recherche dans [es cartes.......coovveeeeeeeeieeccciiiiiieeeeee e 47

3.6.7.PaBINAtiON cuuii i 49

3.6.8.Passage sous Universal Rendering.........ccccccvviiieieeeeeeeeeccccivivneeeennn. 55

3.6.9.5€5SI0NS € COOKIES .evviiiiieiiiiiiiiieee e e e e e 57

3.6.10.5ite COMPIET ..uuiiiiiiiiiie e e e e e e 58

- | 1T ¢ T 4 LY PP 59

L5 3 0o o Lol [¥ - ' o ROt 59
5. MEdIagraphi@.....ccceeuiiieiiiiecireicrrcrrrcrree e ree e rena e s ens e s e nesesennnnens 60
6. LEXIQUE ..ot ireiieeiieiieeiiaiieeiieiieiiesiieiteesteteestssssestassrestassrassassrasssnssasssnssnnes 62

T ANNEXES ... cveereerenrenseasseseasonssassessasesssassassssensssssnssnsenssnsssssnsensensssssnsensansanss 64

1.Introduction

Lors de ma derniére année de Bachelier en informatique et systémes a finalité industrielle,
jai eu 'occasion de réaliser un projet lors d’'un stage en entreprise de 15 semaines. Cette
entreprise est le groupe ECR, I'un des groupes politique du parlement européen.

Lors de ce stage, il m’a été demandé de préparer le terrain afin de moderniser la mise en
place d’une infrastructure applicative pour la rendre disponible sous un navigateur web.
Cette mise en place s’est effectuée sous une nouvelle technologie de rendu universel,
Nuxt.js.

L’objectif final de cette application est de rendre disponible des données générales au sein
de I'entreprise afin que chaque membre puisse les consulter librement.

Pour ce faire, j’ai d0 effectuer des recherches sur différents concepts techniques, tel que le
rendering ou le framework Nuxt.js, que j'expliquerai dans ce travail.

Ensuite, il a fallu mettre en place ces différents concepts afin de répondre aux objectifs de
ce projet.

Enfin, différents tests ont été nécessaires afin de valider le bon fonctionnement de
I'application dans les différents cas de figure possibles lors de son utilisation.

De nouvelles fonctionnalités seront mises en place a l'avenir. Celles-ci sont, de maniére
non exhaustive, la localisation de I'emplacement des lieux de travail des députés (bureaux
alternativement a Strasbourg et a Bruxelles), le remboursement des différents frais liés aux
activités du personnel du groupe ECR, une gestion d’utilisateurs afin de permettre I'accés
a certaines informations, etc...

Ces développements futurs ne seront pas abordés dans ce travail, car ils font toujours
I’objet de négociations au sein du groupe.

Avant d’aborder le projet en lui-méme, ce stage m’a permis de me familiariser avec le
monde de I'entreprise et la gestion d’'un projet de développement en Informatique dans un
cadre professionnel.

La situation sanitaire actuelle n’a pas empéché de mener le projet a son terme, et ce grace
aux nombreux échanges avec le maitre de stage. La disponibilité et les compétences
techniques de ce dernier m’ont permis d’acquérir de nouvelles connaissances dans le cadre
de ma formation.

Je souhaite que la lecture de ce travail fasse apparaitre tout I'enthousiasme que j’ai mis
pour le réaliser.

(@ " curopean
S e, HELH

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

2.Présentation de I'entreprise

2.1.Le Parlement européen

P ——
, , o Z=\\\\
Le Parlement européen (PE) est 'une des sept institutions de ((« (VA \
I’'Union Européenne (UE). Ces institutions sont réparties en \\\: Pt
différentes catégories : Les institutions politiques, les %: ** x
B **

institutions économiques et l'institution judiciaire.
Parlement européen

Les institutions politiques sont composées du Parlement

européen, du Conseil européen, du Conseil des ministres et de la Commission européenne.

Les quatre institutions susnommées détiennent les pouvoirs exécutif et 1égislatif de 'UE.

Les institutions économiques regroupent les institutions de la Banque centrale européenne
et de la Cour des comptes européenne. La premiére contrdle la politigue monétaire de
I'ensemble des 19 états de I'Eurozone’ et ainsi, elle maintient la stabilité des prix sur
’ensemble de ces états. La seconde s’assure de la bonne utilisation du budget de I'UE.

L’institution judiciaire est uniquement composée de la Cour de justice de I'UE. Cette
institution a pour but d’assurer que le droit communautaire est appliqué de la méme facon
dans tous les états et d’arréter les discordes entres les institutions et les Etats.

Parlements nationaux —>» Gouvernements nationaux Chefs d'
tat / gouverneme

. S * ______________ -

A-
1
1
Banque centrale Cour des comptes 1
s ; 3
européenne’ européenne , :
Président .
[}
Cour de justice de Conseil3 <« !
, ., 3| €<——> Conseif . !
I'Union européenne européen 1
1
¢ 1
1
T 1
1
Président Président < 1
1
1
Parlement . Commission® '
, 1 —_— Législation < p « 1
européen europeenne '
1
T * I
1
Corps électoral (selon la loi électorale de chaque Etat membre)
Pouvoir Iégislatif —3» élit / nomme / décide 1: Elu tous les 5 ans. Les modalités de vote varient selon les Etats membres.

))) — » élit (en fonction des Etats) 2: Aussi agpele Cor.15.ell de I'Union euro?eenne ou Conseil d?s rrflmstres.)
I: Pouvoir exécutif Composé d'un ministre par pays, différent selon du domaine a I'ordre du jour.
=3 membre s

3: Chaque pays est représenté par un membre.

D Pouvoir judiciaire —3» propose 4: Composé des représentants des Banques centrales nationales. Son directoire
est élu par le Conseil européenne sur proposition du Conseil.

Figure 1 : Organisation au sein de I'U.E.

Le PE est composé de 705 députés élus dans les 27 pays membres de I'UE élargie. Ce
parlement est élu au suffrage universel direct pour une période de 5 ans.

1 s . s . . .
Eurozone : Les états membres qui ont adoptés I'euro comme monnaie officielle.

S geme HELHa

=
Parlementeuropéen XA Haute cole Lousein en Hainaut

Celui-ci décide également la Iégislation de I'Union, y compris sur le budget pluriannuel, avec
le Conseil de I'Union européenne. Les autres institutions, dont la Commission européenne,
rendent des comptes au Parlement.

Le PE élit le président de la Commission européenne et joue un réle clé dans I'examen des
Commissaires-désignés, en les auditionnant individuellement. Le collége des commissaires
- c'est a dire I'ensemble des vingt-sept commissaires réunis - doit ensuite recueillir le vote
de consentement du Parlement.

Les députés au Parlement européen sont élus dans les états membres de I'UE
et représentent environ 447 millions d’habitants. Au fil des années et des modifications
apportées aux traités européens, le Parlement a acquis des compétences législatives et
budgétaires considérables.

Le PE compte 7 groupes politiques répartis dans toute 'UE. Les députés ne peuvent
appartenir qu’a un seul groupe politique ; Il suffit de 23 députés pour former un groupe
politique qui doit comprendre des membres représentant au moins un quart des Etats
membres. Les députés au Parlement européen ne sont pas organisés par nationalité, mais
en fonction de leurs affinités politiques.

Ces groupes sont :

-Groupe du Parti Populaire Européen (PPE).

-Groupe de I'Alliance Progressiste des Socialistes et Démocrates au Parlement européen
(S&D).

-Renew Europe Group (Renew).

-Groupe des Verts/Alliance Libre Européenne (Verts/ALE).

-Groupe « Identité et Démocratie » (ID).

-Groupe des Conservateurs et Réformistes Européens (ECR).

-Groupe de la Gauche au Parlement européen (La Gauche).

Parlement européen: 2019 - 2024

Renew Europe

@ PPE
Verts/ALE Q @
ECR
S&D @ @ o

. QR 75" °

Sieges

Figure 2 : Sieges occupés par groupes politique au P.E.

En plus des 7 groupes politiques cités ci-dessus, on retrouve les non-inscrits, notés NI. Ces
députés politiques sont présents au Parlement européen mais ne font pas partie d’un
quelconque groupe politique.

\/\/(&\:;\“\\ " curopean
< o] SN0 ReroRmists HELHa

Parlementeuropéen XA Haute cole Lousein en Hainaut

2.2.Le groupe ECR

Le groupe Politique ECR, ou le stage s’est déroulé, retiens donc ici
notre attention.

Le groupe des Conservateurs et Réformistes Européens (ECR ou
CRE en francais) est un groupe politique européen qui regroupe
I’ensemble des partis de droite et de la droite nationaliste en Europe.
Les membres sont pour le « libéralisme économique ». lls disposent [ERCERIENO RV
d’un groupe au Parlement européen mais également d’un groupe a
I’Assemblée parlementaire du Conseil de I'Europe.

A
R

Ce groupe fut fondé le 30 mai 2009 par le Parti conservateur britannique ayant quitté I'ex-
groupe du Parti populaire européen et des Démocrates européens (PPE-DE) devenus le
groupe du PPE. Néanmoins, la création du groupe fut officielle le 22 juin 2009 et est
annoncée a Londres et a Prague simultanément par les conservateurs et le Parti
démocratique civique (ODS). lls comptaient 54 députés (26 conservateurs et unionistes
britanniques, 15 Polonais de Droit et Justice, 9 membres de I'ODS, un Belge, un Hongrois,
un Letton et un Néerlandais). Il est officialisé lors de la premiére représentation au
Parlement européen du 14 juillet 2009.

Composition du groupe ECR par pays lors de la 7™ |égislature (2009-2014).

Groupe ECR 2009-2014

? Belgique: 1
M Croatie: 1

B Danemark : 1

B Hongrie: 1
Italie: 1
Lituanie: 1
Pays-Bas: 1
Pologne: 9
Tchéquie: 9

Royaume-Uni: 27

Figure 3 : Composition du groupe ECR par pays (2009-2014)

A la présidence du groupe on retrouve Michat Kamirski, qui exerca ce réle de juillet 2009
a mars 2011. Ensuite, Jan Zahradil assura la présidence jusqu’en décembre 2011 pour
céder sa place a Martin Callanan, en poste jusqu’a la fin de la législature : le 30 juin 2014.

A ce jour, le groupe est présidé par deux personnes co-présidentes qui sont : Ryszard
Legutko et Raffaele Fitto. Le groupe est constitué, pour la 9éme |égislature (2019-2024),
de 62 sieéges a la chambre du PE.

EUROPEAN
oA i HELH

uuuuu Haute Ecole Lousain en Hainaut

En voici sa composition classifiée par pays :

Groupe ECR 2019-2024

Allemagne: 1
m Belgique: 3
M Bulgarie : 2
B Croatie: 1

Espagne: 4

Gréce: 1

Italie: 6

Lettonie: 2

Lituanie: 1

Pays-Bas: 4

Pologne: 27

Roumanie: 1

Slovaquie : 2
B Suede: 3

M Tchéquie: 4

Figure 4 : Composition du groupe ECR par pays (2019-2024)

(@SS EUROPEAN
S W= HELHa

-
Parlementeuropéen [KEKER Haute £cole Lowsain en Hainaut

3.Présentation du stage

3.1 Introduction

Le groupe ECR met a la disposition de ses membres un site internet permettant de
connaitre les activités de ceux-ci.

En paralléle, un systéme basé sur des documents papiers existe, pour tout ce qui concerne,
en autre, les remboursements et autres frais générés.

Le groupe souhaiterait disposer d’un outil informatisé permettant de rassembler ces
différents points dans une application qui pourrait évoluer, grdce a de nouvelles
fonctionnalités, dans le futur.

C’est |a I'objectif principal de mon stage ; vérifier la faisabilité de cette demande, en tenant
compte des impositions du service informatique du groupe, a savoir, utiliser la technologie
Nuxt.js afin de jeter les bases d’une application pouvant servir de POC (proof of concept)
pour les différents développements a venir.

Pour cela, certains concepts techniques sont nécessaires.

3.2.Différents concepts techniques abordés lors du stage

Lors de ce stage, plusieurs concepts techniques ont di étre utilisés ou simplement
mentionnés. On y retrouve le protocole HTTP, la Single Page Application, le SEO, le DOM
et I’Ajax expliqués ci-dessous.

1. Introduction

En 1989 Tim Berners-Lee, travaillant alors au CERN en suisse, a rédigé une proposition
visant a créer un systéme hypertexte sur internet. La mise en ceuvre de ce systéme
hypertexte en 1990, appelé plus tard World Wide Web, est construit sur les protocoles TCP
et IP existants.

Il est fait de 4 composants :

e Un format textuel pour représenter des documents hypertextes : le HTML.

e Un client pour afficher ces documents : le premier navigateur web (appelé aussi
WorldWideWeb).

e Un serveur pour donner accés aux documents : une premiére version de httpd.

e Un protocole simple pour échanger ces documents : le protocole HTTP.

Ce protocole est un protocole de communication client-serveur. |l utilise par défaut le port
80. Il existe une variante sécurisée, HTTPS qui utilise le port 443. Le protocole HTTP
permet la communication entre un client et un serveur, lors d’'un accés sur un site internet
par exemple.

EUROPEAN
oA e HELH

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

Cet accés va se faire comme suit :

1) L'utilisateur va saisir, dans la barre d’adresse de son navigateur, 'URL du site
auquel il veut accéder : http://www.example.com. Apres avoir résolu cette adresse
et obtenu d'un serveur DNS I'IP du serveur distant lui correspondant, la requéte est

envoyée a celui-ci.

2) La requéte HTTP est envoyée par le navigateur au serveur Web qui héberge le
contenu du site. Cette requéte est notamment composée d’'une méthode, de 'URL
et de la version de HTTP utilisée. Elle a pour but de demander au serveur s’il peut

envoyer le fichier HTML qui compose la page.

3) Le serveur recoit la requéte, la traite et prépare une réponse qu’il renvoie au

navigateur.

4) Le navigateur traite la réponse et affiche la page a I'écran.

Processus de communication HTTP

Utilisateur Navigateur
1 . U RL o Traduit 'URL en

Entrée

2. Requéte HTTP

requéte HTTP

[

>
http://www.example.com/index.html

4. Webpage Adapte les données a

la page Web finale

Affiche la page Web index.html

Figure 5 : Processus de communication du protocole HTTP

Comme dit aux points 1 et 2, le protocole HTTP est fait de requétes. Celles-ci respecteront

la structure suivante :

2. Structure d’une requéte
2.1. « Start Line »

Elles commenceront par ce qu’on appelle une « Start Line » (ligne de départ). Cette « Start

GET /index.html

3. HTTP Response

Code de statut + données de la page

Line » sera composée d’une méthode, d’'une URL et d’une version.

2.1.1. Méthode
Ici la méthode décrit I'action a effectuer.

Ces méthodes sont nombreuses, mais les plus utilisées sont les méthodes GET, HEAD et

POST.

V&Y EUROPEAN
CONSERVATIVES
[S(®28 AND REFORMISTS

uuuuu

HELHa

Haute Ecole Lousain en Hainaut

Serveur Web

Interpréte la requéte, récupére
les fichiers de données requis

.]
.]
==

Envoie le statut de la requéte
et des données a la page Web

2.1.2. URL
L’'URL est la cible de la requéte. Celle-ci peut étre écrite de facons différentes.

e Un chemin absolu, également appelé « forme d’origine ». Cette forme d’URL est
utilisée avec les méthodes GET, POST, et HEAD. Celle-ci commencera par un « / »
et peut également n’étre constituée que de ce caractére pour cibler la racine du site.
Quelques exemples :

-GET /background.png HTTP/1.1
-POST /HTTP/1.0
-HEAD /test.html ?query=test HTTP/1.1

¢ Une URL compléte, également appelé « forme absolue ». Celle-ci est principalement
utilisée avec la méthode GET.
Cette URL sera relative au serveur et sera formée de cette fagon :
-GET http://www.example.com. HTTP/1.1

e Une URL comprenant un composant d’autorité, composé d’'un nom de domaine et
éventuellement du port, précédé du caractére « : ». Elle n’est utilisée que par la
méthode CONNECT lors de la configuration d’un tunnel HTTP (cette méthode ne sera
pas reprise dans ce travail) ... Elle se présente comme suit :

-CONNECT example.com:80 HTTP/1.1

o Une URL redirigeant sur I'entiéreté du serveur. Cette URL se compose uniquement
d’'une astérisque « * » et est utilisée avec la méthode OPTIONS (cette méthode ne
sera pas reprise dans ce travail).

En voici un exemple :
-OPTIONS * HTTP/1.1

2.1.3. Version
La version HTTP définit la structure du message. Elle agit comme un indicateur de la
version attendue a utiliser pour la réponse.

Ensuite, viennent les « Headers » (en-tétes) qui complétent la requéte.

2.2. « Headers »
Les « Headers » HTTP d’une requéte suivent tous la méme structure. Une chaine
insensible a la casse?® suivie d’un séparateur, deux points, « : » et d’'une valeur dont la
structure dépend du type de « Header ». Cette structure n’est faite que sur une seule ligne
ce qui peut étre, parfois, assez long.

Un exemple de « Headers » : -Content-Length : 9000
-Content-Type: text/html
-Connection: keep-alive

Aprés les « Headers » vient le corps de la requéte également appelé « Body ».

2 . \ . A .y 7 . . .
Insensible a la casse : L’action sera la méme que ce soit écrit en majuscules ou en minuscule

EUROPEAN
oA e HELH

eeeee Haute Ecole Lousain en Hainaut

2.3. « Body »
C’est la derniére partie de la requéte bien qu’elle puisse étre optionnelle. Effectivement
toutes les méthodes n’ont pas besoin de corps. Celui-ci n’est utile que pour les requétes
servant a envoyer des données au serveur afin de les mettre a jour.

3. Structure d’une réponse
Une fois la requéte regue, le serveur envoie une réponse au navigateur.
Cette réponse a, a l'instar de la requéte, une structure.

3.1. « Status Line »
Cette réponse commence par une « Status Line » (ligne d’état).
La « Status Line » contient les informations suivantes : la version d’'HTTP, un « Status
Code » (code de statuts) et un texte d’état.

3.1.2. Version
La version d’HTTP est en relation directe avec la requéte. Effectivement, si la requéte
envoie une certaine version d’'HTTP, la réponse aura la méme version.

3.1.3. « Status Code »
Le « Status Code » indique I'état de la réponse. Nous reviendrons plus en détails sur ces
codes de statut.

3.1.4. « Status text »
Le texte d’état est une bréve description textuelle purement informative du « Status Code »
pour qu’un humain puisse comprendre le message HTTP plus facilement.

Exemples de « Status Line »:
-HTTP/1.1 404 NOT FOUND
-HTTP/1.0 200 OK

3.2. « Headers »
Ensuite, comme pour la requéte, on retrouve le « Header » de la réponse.
Cet en-téte a la méme structure que celle de la requéte ; c’est-a-dire une chaine insensible
a la casse suivie d’'un séparateur, deux points, « : » et d’une valeur. Ceci s’appelle une
paire de clé/valeur. Au méme titre que I'en-téte de la requéte, la structure de la valeur
dépend du type de « Header ». Celui-ci peut, encore une fois, étre assez long car toujours
sur la méme ligne.

3.3. « Body »
Comme dans une requéte, le dernier élément de la réponse est son corps.
Toutes les réponses n’ont pas nécessairement un corps. Effectivement, les réponses, avec
un « Status Code » qui répond suffisamment a la demande sans avoir besoin de contenu
correspondant, n’en ont pas. Par exemple les « Status Code » 204 ne nécessitent pas de
corps de réponse.

- V. 4 EuropEan
S e, HELH

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

4. Méthodes plus en détails.

4.1. Méthode GET
La méthode GET est la méthode la plus courante pour récupérer une ressource statique
ou dynamique sur un serveur. Ces requétes avec la méthode GET ne peuvent,
théoriqguement, servir qu’a récupérer des données mais dans la pratique certains
développeurs pourraient I'utiliser pour envoyer des données au serveur pour aller, par
exemple, modifier ou écrire des informations dans une base de données.

La méthode GET peut posséder des « Headers » mais ne posséde pas de corps dans la
requéte.

Cependant, la réponse peut également posséder des « Headers » mais elle, au contraire
de la requéte, posséde généralement un corps de réponse.

% telnet httpbin.org 80

« Satus code » 200 ok

Headers de la réponse

ta
title>h

Corps
<4—— de laréponse
en Html

Figure 6 : Exemple de requéte GET via Telnet

4.2. Méthode HEAD
La méthode HEAD est surtout utilisée lors de tests ou a des fins informatives. Cette
méthode permet, entre autres, a l'utilisateur de savoir si la page a afficher n’est pas trop
volumineuse avant de la télécharger entiérement. Si la page semble trop grande pour
I'utilisateur, il pourra éviter de faire une requéte GET pour, par exemple, économiser de la
bande passante.

Cette méthode peut posséder des « Headers » mais ne posséde pas de corps dans la
requéte.

] Al HELHa

RIOIVIE Haute Ecole Louvain en Hainaut

La réponse peut également posséder des « Headers » mais ne posséde généralement pas
de corps. Si, malgré tout, corps il y a dans la réponse, celui-ci sera rogné et ignoré.

robeThomas ~ % telnet httpbin.or

« Status code » 200 ok

Headers de la réponse

Figure 7 : Exemple de requéte HEAD via telnet

4.3. Méthode POST
La méthode POST, a contrario des autres méthodes décrites, sert a envoyer des données
au serveur.

Cette méthode peut posséder des « Headers » et possede un corps dans la requéte.
La réponse peut également posséder des « Headers » et posséde généralement un corps.

% telnet httpbi

« Status Code » 200 ok

<4—————— Header de la réponse

44— Corps de la réponse

Figure 8: Exemple de requéte POST via Telnet

] Al HELHa

RIOIVIE Haute Ecole Louvain en Hainaut

5. Précisions des « Status Codes »
Les codes de statuts HTTP font partie des réponses fournies par les serveurs lors de
chaque requéte effectuée sous n’importe quelle méthode.

Ces codes, composés de 3 chiffres, permettent au navigateur de savoir si la requéte a bien
été formulée, si celle-ci a abouti, etc. Ces « Status Codes » sont divisés en plusieurs
classes selon le chiffre se situant en premiére position :

e Laclasse 1XX : ce sont les codes d’information. Ces codes commencent par le chiffre 1, ce
qui indique au client que la requéte est en train d’étre effectuée. Cette classe regroupe
donc tous les codes des requétes étant en cours de traitement et ou d’envoi.

e La classe 2XX : ce sont les codes de succes. Ces codes commencent par le chiffre 2 et
indiquent I'aboutissement de la requéte. Cette requéte a donc été recue par le serveur, a
été comprise et acceptée. Ces codes sont envoyés en méme temps que les informations
des pages web demandées.

e La classe 3XX : ce sont les codes de redirection. Ces codes commencent par le chiffre 3.
Ceux-ci stipulent au client que le serveur a bien recu la requéte mais que le client doit
encore effectuer une action supplémentaire pour que le traitement soit conduit a sa
résolution finale. Ces codes apparaissent lors de cas de redirections.

e Laclasse 4XX : ce sont les codes d’erreur du client. Ces codes commencent par le chiffre 4
et renvoient a une erreur commise par le client. lls signifient que le serveur a bien regu la
requéte mais ne peut pas I'exécuter. Dans la majorité des cas, ces codes sont dus a une
erreur de syntaxe. Les développeurs peuvent avoir mis en place du contenu, a afficher, sur
le serveur lorsque ce genre de code est répondu.

e Laclasse 5XX : ce sont les codes d’erreur du serveur. Ces codes commencent par le chiffre
5. lls font référence a une erreur commise par le serveur. lls indiquent que la requéte est
compléetement ou provisoirement impossible a effectuer. Une page HTML est
généralement affichée.

Certains codes notables sont : 200, 304, 400, 403, 404, 500 et 503.

e Le code 200 : généralement suivi de « Ok » indique au client que la requéte a bien été
traitée avec succes. La réponse dépendra, bien évidemment, de la méthode de requéte
utilisée.

e Le code 304 : ce code, suivit de « Moved Permanently », indique que la ressource a été
définitivement déplacée a L'URL contenue dans le Headers.

e Le code 400 : suivi de « Bad Request » est une réponse a une requéte a syntaxe erronée.
Ce code survient fréquemment lors de test sur un serveur.

e Lecode 403 :suivide « Forbidden » indique que le serveur a compris la requéte mais refuse
de I'exécuter. Ce code d’erreur est souvent retourné lorsque I'utilisateur ne peut pas
accéder a la ressource demandée. S’authentifier ne servira a rien dans ce cas, la ressource
ne pourra pas étre accessible.

EUROPEAN
&) i HELHa

° Haute Ecole Lousain en Hainaut

Le code 404 : toujours suivi de « Not Found » est une réponse récurrente qu’on rencontre
lorsque la ressource demandée n’est pas trouvée. Généralement, une page dédiée aux
erreurs 404 est située sur un site internet. Cette erreur peut étre facilement générée en se
trompant ou en ajoutant des caractéeres dans une URL.

Le code 500 : ce code est retourné en réponse a une requéte lorsqu’une erreur interne au
serveur est présente. Si le serveur ne peut traiter la requéte, ce code est automatiquement
affiché. Généralement seul 'administrateur du site pourra régler ce probléme.

Le code 503 : ce code est envoyé en réponse a une requéte quand le service requis est
temporairement ou indéfiniment indisponible ou en maintenance. Cela peut aussi se
produire lorsque le serveur est surchargé. L'utilisateur doit, en général, se dire qu’un
administrateur travaille, au moment méme, sur le probléme et que le service sera de
nouveau disponible sous peu.

EUROPEAN
Al HELHa

Parlement européen ROUP Haute £cole Louvein en Hainaut

3.2.2.Single Page Application

Une « single page application (SPA) » ou une application web mono-page est une
application web, comme son nom l’indique, accessible via une et une seule page web. Le
but est d’éviter le chargement d’une nouvelle page a chaque action demandée.

Single Page Application Application Web Traditionelle
L LX) eo00 —
Modele
(template) Page
1 SPA 1
Modeéle
template,
(2p) Modele (template) Pazge
actuel
Modéle
(template) Page
3 3
Pas de rafraichissement complet e
de la page lors d’une requéte Rafraichissement complet
de la page lors d’une requéte

Figure 9 : rafraichissement d’une Single Page Application.

Cela fluidifie ainsi I'expérience utilisateur. Pour ce faire, I'ensemble des éléments de
I'application est chargé en une fois. Lors de l'utilisation d’'une SPA, le navigateur devient,
en quelques sorte, un ordinateur qui exécuterait localement un programme téléchargé sur
internet. Cette facon de faire des applications web apporte quelques avantages, tels que :

» La vitesse de chargement : le plus grand avantage du SPA est sa rapidité, car une
fois I'application chargée, la quantité de données transitant entre le client et le
serveur est trés faible. Les temps de chargement en sont donc réduits au minimum.

» Le développement mieux organisé : lors du développement d'une application & page
unique, le code c6té serveur est réutilisé et est effectivement découplé de l'interface
utilisateur frontale. Cela signifie que les équipes « Back-End » et « Front-End »
peuvent se concentrer sur leur travail respectif. Elles doivent néanmoins
communiquer entre elles pour s’assurer que les bonnes informations seront bien
envoyées et recues.

Par contre, cette facon de coder des applications web a un défaut majeur : la mauvaise
gestion du SEO (expliqué ultérieurement).

EUROPEAN
e, HELHa

BBBBB Haute Ecole Lousain en Hainaut

3.2.3.Document Object Model

Le Document Object Model ou le DOM est la représentation objet des données qui
composent la structure et le contenu d’'une page web. Le DOM est une représentation du
fichier HTML source. Il le transforme, en quelque sorte, en un modéle utilisable par d’autres
programmes. Ce modeéle utilisable a une structure spécifique, appelée « Node Tree »
(arborescence en nceud). Sa représentation se fait en forme d’arbre ou a chaque nceud du
document HTML, une nouvelle ramification se crée. Le premier élément est la balise
« <html> », ce qu’on pourrait associer a la racine de I'arbre. Chaque élément ou balise se
situant dans ce document fera partie des branches de cet arbre.

Par exemple, pour le code suivant :

<html>
<head>
<title>Ma page HTML</title>
<meta charset="utf-8">
</head>
<body>
<hl>Bonjour le monde!</hl>
<p>Comment allez vous?</p>
</body>
</html>

Figure 10 : Exemple de code HTML simple

On obtiendra ce genre de DOM :

HTML

-
Ma page HTML Charset = "utf-8" Bonjour le monde! Comment allez vous?

Figure 11 : Exemple de ce que peut donner un DOM

Le DOM définit également la fagon dont la structure du document HTML peut étre modifiée
par les programmes ou scripts, en terme de style et de contenu.

Le JavaScript s’exécute en partie sur le DOM pour en modifier son style et son contenu
pour afficher les différents éléments voulus a I'écran.

EUROPEAN
e, HELHa

Haute Ecole Lousain en Hainaut

Parlement européen

Pour généraliser, le DOM relie les pages HTML aux scripts ou langages de programmation.
Le DOM est donc ce que le navigateur utilise pour afficher la page a I'’écran. Le DOM sert
ainsi de liant entre le HTML et les scripts pour ne faire plus qu’un seul fichier a afficher.

3.2.4.5E0

Le Search Engine Optimization (SEO), ou optimisation pour les moteurs de recherche, est
I’ensemble des techniques visant & améliorer le positionnement d’une page, d’un site ou
d’'une application web dans la page des résultats d’'un moteur de recherche. Ce
positionnement est considéré comme bon lorsque le site est classé dans la premiére page
des résultats de recherches faites grace a des mots clés correspondant a sa thématique.

Le SEO, contrairement au SEA (Search Engine Advertising), est gratuit et est basé sur la
bonne optimisation du site. Cette optimisation peut étre technique, grace a I'indentation, au
contenu, a sa forme (meta tags) ou stratégique, basé sur les clients et leurs besoins.

LES CRITERES DE CLASSEMENT

o

APPARENCE ET QUALITE DU SITE REGULARITE
ACTIONS & T ANCRE
Expérience PUISSANCE DU DOMAINE
TAUX DE REBONDs——— ' “i‘lte“’
(UX)
+ PROVENANCE
|
) TRUST
TAUX DE CONVERSION ‘

VOLUME

SHECHEE D ’_\ (——‘ CHOIX DES MOTS-CLES P e—
EMPLACEMENT
FRAICHEUR o1 B TOXICITE .

LIENS INTERNES QJ

INTERET DES PAGES

@

RESPONSIVE 0
DESIGN
HTML PROPRE o
OPTIMISATIONS
. VITESSE DE ON PAGE

CHARGEMENT
seh).fr

FACTEURS
BLOQUANTS

BALISAGE

Figure 12 : Criteres de classement SEO.

(s " curopean
<Ha e, HELHa

Parlementeuropéen CEKEEAd Haute Ecole Louvain en Hainaut

« Le SEOQ est l'art et la technique de persuader les moteurs de recherche comme Google,
Bing, et Yahoo, de recommander votre contenu a leurs utilisateurs comme la meilleure
solution a leur probléme. »°

La plupart du temps, les développeurs se concentrent sur le référencement sur le moteur
de recherche Google. En effet ce moteur de recherche est, de loin, le plus utilisé en Europe.

Parts des marché des moteurs de recherche
en Europe

R

Google : 93,62%
W Bing:2,42%
B YANDEXRU : 1,84%
M YAHOO: 0,96%

Autres: 0,76%

Figure 13: Parts des marchés des moteurs de recherche en Europe.

3.2.5.Ajax

L’Asynchronous JavaScript and XML (Javascript et XML asynchrones), dit Ajax, est une
méthode utilisant différentes technologies des navigateurs web qui permet d’effectuer des
requétes aux serveurs web depuis le code JavaScript. Cette méthode permet de mettre en
place des applications web et des sites web dynamiques interactifs. XML présent dans
I'acronyme d’Ajax était historiquement le format utilisé pour échanger des données entre le
navigateur et le serveur web. De nos jours le JSON (JavaScript Object Notation) lui est, le
plus souvent, préféré da a sa facilité d'interprétation par le moteur JavaScript.

La méthode classique de communication entre un serveur et un navigateur d’une
application web standard se fait comme suit :

Lors de chaque action effectuée par l'utilisateur, le browser (Navigateur internet) envoie au
serveur une requéte HTTP, vue précédemment, contenant un lien vers une page web.

Le serveur va alors effectuer des « calculs » et envoyer le résultat, au navigateur, sous
forme d’'une page web.

Une fois regue, celui-ci l'affichera.

3 Source : https://fr.semrush.com/blog/definition-seo-guide-2020-
debutants/?kw=&cmp=FR_SRCH DSA Blog Core BU FR&label=dsa pagefeed&Network=g&Devi
ce=c&utm_content=486542000146&kwid=aud-296306606820:dsa-

1100351999444 8&cmpid=11849486850&agpid=113156852777&BU=Cor

(o EUROPEAN
g #ie HELHa

arlementeuropéen KKK Haute £cole Lowsain en Hainaut

Chaque manipulation faite par I'utilisateur entrainera cette séquence d’actions.
Ce qui engendre une perte de temps lors des rafraichissements intempestifs a chaque
action, contrairement a I’Ajax qui modifie la fagon dont ce dialogue se déroule.

En effet, lorsque I'utilisateur fait une action, un programme écrit en JavaScript, présent sur
la page web, est exécuté par le navigateur. Ce programme envoie, en arriére-plan, les
requétes au serveur web, puis modifie le contenu de la page actuellement affichée par le
browser en fonction du résultat recu du serveur. Ce procédé évite la transmission et
I’'affichage, c’est-a-dire, le rafraichissement de la page au complet.

Cette méthode nécessite de programmer, en JavaScript, les échanges entre le navigateur
web et le serveur web. Il est nécessaire, également, de programmer les modifications a
effectuer dans la page web lorsque les réponses sont regues.

Ces dialogues sont, comme le nom Ajax l'indique, fait de maniére asynchrone. Cela veut
dire que le navigateur continue d’exécuter le programme JavaScript lorsque la requéte est
effectuée. Celui-ci n'attend donc pas la réponse du serveur et l'utilisateur peut ainsi
continuer a effectuer des manipulations pendant ce temps. Une fois la réponse recue, celle-
ci sera traitée par le gestionnaire d'événement défini lors de I'appel a cette fonction.

EUROPEAN
] Sesis HELHa

Parlement européen ou P Haute Ecole Lousain en Hainaut

3.3.Le rendering

Dans le monde du développement web, on différencie 2 types de rendering.

Le premier fait référence au « Rendering Engine », que I'on peut traduire en francais par
« Moteur de rendu » du navigateur.

Le moteur de rendu est, en quelque sorte, le noyau d’'un navigateur internet, par analogie
avec le moteur des véhicules.

Effectivement, le moteur de rendu a une fonction trés importante : il permet d’afficher ce
qu’on voit a I’écran. Il communique avec la couche réseau du navigateur pour récupérer le
code HTML et d’autres éléments transmis, tels que des fichiers JavaScript depuis un
serveur web distant.

Une fois que tous ces éléments sont présents dans le moteur de rendu, il analyse les
fichiers HTML et crée le DOM grace a ceux-ci et aux fichiers JavaScript recus. Il construit
ensuite, a l'aide des attributs CSS et du DOM, l'arborescence de rendu. Ensuite, il
commence le processus de mise en page en parcourant de maniére récursive les éléments
HTML de l'arborescence et détermine ou ceux-ci doivent étre placés. Pour finir, il affiche
chaque branche de I'arborescence de rendu a I'écran, en communiquant avec l'interface
du systéme d’exploitation qui, contient des conceptions et des styles indiquant & quoi
doivent ressembler les éléments de l'interface utilisateur.

Le second, celui qui nous intéresse ici, est celui qui « génére » le fichier HTML. Ce fichier
est ensuite utilisé par le navigateur afin de faire le premier type de rendering expliqué ci-
dessus. Ce deuxieme rendering se décline de différentes facons, a savoir : le Static
rendering, le Server Side rendering, le Client Side rendering et I'Universal rendering.

Les technologies du développement web ont beaucoup changé au fil des années.

Avec les débuts d’internet, seule une ou plusieurs pages statiques étaient nécessaires pour
créer un site web. Ces pages contenaient souvent du texte ou des images et étaient bien
souvent codées sous HTML et CSS. Ces sites utilisaient la méthode la plus conventionnelle
de I'époque qui était le Static Rendering (rendu statique).

Cette méthode ne permettait pas de faire de site dynamique. Aucun appel a une ou
plusieurs sources d’informations (une base de données, une API*, un service web, ...)
n’étant fait, seuls les éléments affichés sur la page étaient disponibles.

Cette méthode est la plus s(re, son rendu est le plus rapide, son déploiement est le moins
complexe a mettre en place et, de plus, elle ne demande que quelques Ko de stockage.
Cependant, comme elle ne permet aucun rendu dynamique et que sa maintenance n’est
pas chose aisée, elle n’est plus aussi utilisée qu’avant.

* API : Application Programming Interface ou interface de programmation d’application. Source de
données accessible.

n EUROPEAN
oA Consmuimes HELH

eeeee Haute Ecole Lousain en Hainaut

Effectivement, si, sur un site de vente fait en Static Rendering, nous étions amenés a
ajouter plusieurs produits différents, nous devrions créer chaque page une a une. De la
méme facon, si nous souhaitions modifier les caractéristiques d’un produit, nous devrions
le faire sur chaque page ou ce produit apparait. Comme dit plus haut, aucune requéte a
une quelconque source d’informations n’est effectuée dans ce cas.

Son fonctionnement se fait comme ceci :

1) Lors de l'accés au site web, ici fruits.com, une requéte est envoyée au serveur pour
pouvoir afficher le site web.

2) Le serveur envoie une requéte a la source de fichiers statiques qui contiennent les
pages déja traitées et rendues.

[] B C x it

C G fruits.com "
1) Requéte d’accés au site.

>
Cd

2)Requéte des
fichiers statiques
a afficher

Figure 14: SR image 1

3) La source de fichiers renvoie au serveur la ou les ressources demandées.

4) Le serveur envoie au navigateur la ressource recue par la source de fichiers
statiques.

5) Affichage de la ressource sur le navigateur.

® e 2 Accueil X +

C G fruits.com b
1) Requéte d’accés au site.

>
Cd

5) Affichage de la page.

Bienvenue sur fruits.com ! 4)Envoi de la page HTML regue
au navigateur.
&
<
(Banane J)
3) reponse.s de la source 2)Requéte des
fruits.html. fichiers statiques
a afficher.
(@ Pomme J

(& Citron]

Figure 15 : SR image 2

EUROPEAN
e, HELHa

Parlementeuropéen XA Haute cole Lousein en Hainaut

6) Lors du clic sur I'un des boutons du site, ici banane, une nouvelle requéte est
envoyée au serveur afin de recevoir la ressource appropriée.

7) Le serveur envoie ensuite une requéte a la source de fichiers pour qu’il puisse
retourner la ressource demandée.

ece 2 Accueil x 4+

C G fruits.com ¥
5) Requéte d’acceés au site.

@ Fruits >

Bienvenue sur fruits.com!
6) Requéte des

[Banane)
fichiers statiques

a afficher
(@ Pomme j

(@ Citron)

Figure 16 : SR image 3

8) La source de fichiers statiques envoie les ressources demandées au serveur.

9) Le serveur envoie les ressources regues au navigateur, qui les affiche a I'écran.

ece 2 Accueil x +
C G fruits.com W
5) Requéte d’acceés au site.
s S
@ Fruits e >
Bienvenue sur la page Banane SIEnvoi(de la/page HTML recue
au navigateur.
pra
<
7) réponses de la source 6) Requéte des
Description SLUELAET fichiers statiques
a afficher
@ Jaune
-~ 150g
® 26

Figure 17 : SR image 4

\/\/((\:= SN EUROPEAN
= e, HELHa

=
Parlementeuropéen XA Haute cole Lousein en Hainaut

Si nous devions résumer cette méthode de Rendering en une image :

@ HTML @ HTML \
</> </>

Figure 18 : Schéma Static Rendering

3.3.3.Server Side Rendering

Pour pallier le probléme de rendu dynamique et de maintenance, la méthode du SSR a été
inventée.

Cette méthode consiste a charger tout le rendu graphique, les traitements et les appels a
la source d’'informations au niveau du serveur puis de les renvoyer, une fois chargés, au
browser.

Ceci permet a I'usager de ne pas devoir posséder un ordinateur puissant pour afficher une
page internet. A I'époque, les ordinateurs a usage personnel vendus dans le commerce
n’étant pas vraiment puissants, cette méthode était relativement efficace.

Elle fonctionne comme suit :
1) Lors de l'accés au site web, ici fruits.com, une requéte est envoyée au serveur pour
pouvoir afficher le site web.

2) Le serveur envoie une requéte a la source avec les données demandées, ici la page
« fruits.com ».

3) La source d’informations lui répond en lui donnant les données demandées, ici les
sortes de fruits.

4) Le serveur traite les différents fichiers html et scripts.

EUROPEAN
] Sesis HELHa

Parlement européen SuP Haute £cole Louvein en Hainaut

C G fruits.com w
1) Requéte d’accés au site.

-~
Cd

4) Calcul coté serveur

3) réponses de la source

é « 2)Requéte pour
[’ y -] avoir les données
depuis la
source d’informations

Figure 19 : SSR image 1

5) Une fois les traitements de rendu effectués, le serveur envoie I'affichage de la page
d’accueil sur le navigateur de l'utilisateur.

® ® 2 Accueil X +

C G fruits.com b
1) Requéte d’accés au site.

.

5) Redirection vers

Bienvenue sur fruits.com ! la page d’accuelil
&
-~
(Banane]
3) réponses de la source
T~ 2)Requéte pour
[’ é a‘] avoir les données
depuis la
(‘ Pomme] source d’informations

(& Citron J

Figure 20 : SSR image 2

6) Lors du clic sur 'un des boutons de la page, ici le bouton « banane », une nouvelle
requéte au serveur est effectuée pour y accéder.

7) Le serveur envoie une requéte a la source d’'informations en demandant des infos sur la
page en question, ici la page banane.

8) La source d’informations répond au serveur et lui envoie les données qu’elle posséde a
ce sujet.

9) Le serveur traite le rendu graphique de la page.

10) Une fois le rendu graphique traité, le code html, avec les données de la source
d’informations, est envoyé au navigateur web.

EUROPEAN
e, HELHa

BBBBB Haute Ecole Lousain en Hainaut

ece Banane x +

C G fruits.com/banane ¢ 6) requéte pour accéder

a la page banane
@ Fruits e >

Bienvenue sur la page Banane

9) calcul de rendu
10)Banane.html
&

S

8)Réponse dela source

Description COU|ELfI‘I Jaune 7) GET
Poids : 1509 2
= /fruits/
® Prix : 2€
«3% Jaune
- 150g
& 2¢

Figure 21: SSR image 3

Cependant, les requétes faites par le navigateur au serveur, qui contiennent les données
du site internet, peuvent prendre un certain délai. Théoriquement, ce délai n’est censé étre
que de quelques millisecondes, mais dans la pratique, cela varie énormément a cause des
conditions du réseau dans lequel on se trouve, de la rapidité de sa connexion, de la
localisation du serveur, du nombre de requétes simultanées faites sur ce serveur, de

I'optimisation du site internet, etc.

Tous ces facteurs peuvent allonger ce délai de quelques millisecondes a quelques
secondes, voire méme, dans les cas les plus extrémes, plusieurs minutes. Ce qui peut étre

dérangeant pour un simple affichage de site internet.

Si nous devions résumer cette méthode de Rendering en une image :

HTML

HTML <> D
<> D — — —]
= | 1 =

Figure 22 : Schéma Server Side Rendering

EUROPEAN
e, HELHa

BBBBB Haute Ecole Lousain en Hainaut

Pour pallier les éventuelles latences dues aux sites toujours plus volumineux, on préfére
l'utilisation d’'un Client Side Rendering (rendu c6té client ou CSR). Effectivement, cette
méthode demande a l'usager de faire certains traitements et rendus graphiques grace a
son navigateur.

Cette derniére est codée majoritairement en HTML, comme pour le SSR, mais avec des
parties de JavaScript incrustées au code. Ces parties permettent également de rendre les
sites internet beaucoup plus dynamiques. Cette méthode demande plus de puissance au
niveau de l'ordinateur de I'usager mais offre des possibilités que la méthode du SSR ne
peut pas proposer.

Elle fonctionne comme suit :

1) Lors de l'accés au site web, ici fruits.com, une requéte est envoyée au serveur pour
pouvoir afficher le site web.

2) Le serveur répond directement au navigateur et lui envoie la page html non compilée
qui contient essentiellement des scripts et des balises de style. Sans contenu, la
premiére chose que l'utilisateur voit, est une page blanche.

C G fruits.com e
1) Requéte d’accés au site.

>
L

2)Réponse du serveur et
envoi de la page html

.
-~

Figure 23 : CSR image 1

3) Le navigateur fait une ou plusieurs requétes pour que le serveur exporte ensuite les
paquets JavaScript.

4) Le serveur envoie les paquets JavaScript au navigateur, si ceux-ci ne sont pas encore
téléchargés cété client.

5) Une fois les paquets récupérés, le navigateur compile les paquets et en ressort un
« layout » (plan du site) HTML sur le navigateur. Celui-ci sera certainement un plan
commun a toutes les pages ; la page n’a donc pas toutes les informations et devra
donc demander I’export des données a la source d’informations.

EUROPEAN
&) i HELHa

Parlement européen © Haute £cole Louvein en Hainaut

ece 2 Accueil X +

3) Requéte au

C G fruits.com 4 serveur pour

récupérer les
. aquets JavaScripts
@ Fruits © £ &

4) Envoi des paquets

Bienvenue sur fruits.com ! JavaScripts

v

A

5) Compilation des paquets JavaScripts et
affichage de la page html compilée.

Recupération des données

™

Figure 24 : CSR image 2

6) Le navigateur demande donc a la source d’informations de lui envoyer les données
relatives a la page fruits.com pour étoffer la page d’accueil.

7) La source d’informations envoie les données pour que le navigateur puisse afficher
correctement le contenu de la page.

8) Une fois ces données recgues, le contenu dynamique est affiché a I'écran.

® e 2 Accueil X 4+

C G fruits.com b

Bienvenue sur fruits.com!

[Banane j

8)Affichage du
contenu dynamique [O Pomme]
6) Requéte a la source
GET /fruits
(. Citron) >
7) Réponse de la source
[, @ Q)

A

Figure 25 : CSR image 3

9) Lors du clic sur un élément pour naviguer sur une autre page, ici la page banane par
exemple, le layout sera directement affiché a I'’écran mais une demande d’export des
données relatives a la page banane est faite a la source d’informations.

EUROPEAN
e, HELHa

BBBBB Haute Ecole Lousain en Hainaut

ece Banane x +

C G fruits.com/banane w

Bienvenue sur la page Banane

Recupération des données
o 9)Requéte a la source d’informations

GET /fruits/

>
L

N

Figure 26 : CSR image 4

10) La source d’informations répond au navigateur en lui envoyant les données relatives a la page
souhaitée, ici la page banane.

11) Une fois ces données regues, le contenu dynamique est affiché a I’écran.

ece Banane x +

C G fruits.com/banane w

Bienvenue sur la page Banane

Description
11) Affichage du @
contenu dynamique € Jaune 9)Requéte a la source d’informations
| -
== 1500 GET /fruits/
& 2¢ >

10) réponse de la source

Couleur: Jaune
Poids : 150g
Prix : 2€

Figure 27 : CSR image 5

Cependant, cette méthode a quelques défauts :

Vu que le rendu se fait du c6té client, le navigateur est soumis a une plus grande
contribution que dans le cas d’un rendu cété serveur. Cela peut engendrer certaines génes
si le site est souvent utilisé sur mobile (comme une utilisation excessive de la batterie par
exemple).

Le défaut majeur du Client Side Rendering est son inefficacité en termes de SEO.
Effectivement, les robots des moteurs de recherche, qui s’occupent d’indexer les sites, ne
sont que peu ou pas capables d’exécuter du code JavaScript. Donc, si tout le rendu est fait
en JavaScript, ces robots ne « voient » aucun contenu a indexer. Ceci rend le
référencement SEO impossible ou presque.

EUROPEAN
e, HELHa

BBBBB Haute Ecole Lousain en Hainaut

Depuis quelques années, Google a développé un robot appelé « Googlebot » qui peut
exécuter quelques lignes de JavaScript pour aider a ce référencement. Mais il ne faut pas
que le code JavaScript soit trop conséquent, auquel cas, il n’arrivera pas a référencer ce
site.

Si nous devions résumer cette méthode de Rendering en deux images :

5 "W Y

Vuejs

Figure 28 : Schéma Client Side Rendering 1

[—
D

Vuejs

Figure 29 : Schéma Client Side Rendering 2

(@S EUROPEAN
S W= HELHa

Parlementeuropéen XA Haute cole Lousein en Hainaut

Depuis quelques temps une nouvelle méthode de rendu a fait son apparition dans le monde
du développement web. Celle-ci est appelée Universal Rendering. Elle combine les
avantages des deux méthodes que sont le SSR et le CSR. Elle permet d’avoir un affichage
méme si les données de la page ne sont pas encore envoyées depuis la source
d’informations. Cette page ne doit pas totalement étre rechargée lors de la navigation.
Cette méthode commence, comme le rendu c6té serveur, tout en ayant la finalité d’'un rendu
cété client. C’est-a-dire que les fichiers JavaScript sont téléchargés en local sur le client.

Elle fonctionne comme suit :

1) Lors de l'accés au site web, ici fruits.com, une requéte est envoyée au serveur pour
pouvoir afficher le site web.

2) Le serveur envoie une requéte a la source d’informations avec les données
demandées, ici la page « fruits.com ».

3) La source d’informations lui répond en lui donnant les données demandées, ici les
sortes de fruits.

4) Le serveur traite les différents fichiers HTML et scripts.

C G fruits.com W
1) Requéte d’accés au site.

>
7

4) Calcul coté serveur

3) réponse de la

source d’informations 2)Requéte pour
avoir les données

[’ é a-—] depuis la source

d’informations

Figure 30 : UR image 1

5) Une fois les traitements de rendu effectués, le serveur envoie la page d’accueil sur le
navigateur de I'utilisateur.

EUROPEAN
] Sesis HELHa

Parlement européen SuUP Haute £cole Louvein en Hainaut

v e 2 Accueil x +

C G fruits.com W
1) Requéte d’acces au site.

@ Fruits e >

5) Redirection vers

Bienvenue sur fruits.com! la page d’accueil
&
<
(Banane] 3) réponse de la
source d’informations 2)Requéte pour
~ avoir les données
[, év ‘L-] depuis la source
(‘ Pomme) d’informations

(& Citron)

Figure 31 : UR image 2

6) Méme si laffichage ici est complet, le site n’est pas encore interactif et donc
I'utilisateur ne pourra appuyer sur aucun bouton pour afficher une autre page.

ece 2 Accueil x JEE

C G fruits.com w

Bienvenue sur fruits.com !

a—

Banane)

(@Pomme)
E @ Citron)

Pas encore interactif

Figure 32 : UR image 3

7) Il faut que le navigateur recoive les fichiers JavaScript pour que le site soit totalement
fonctionnel.

8) Une fois les fichiers JavaScript recus, une période de traitement commence. Cette
période consiste a synchroniser I'état de l'interface utilisateur de I'application avec
I’état initial recu du serveur (synchronisation du JavaScript avec le HTML recu
auparavant).

“m [E]&%: HELHa

=
Parlementeuropéen XA Haute cole Lousein en Hainaut

ece 2 Accueil x + 7)Requéte au

serveur pour

C G fruits.com w H récupérer les
paquets JavaScripts

>

8)Envoi des paquets
JavaScripts

Bienvenue sur fruits.com ! <

[Banane]

(@ Pomme)

(« Citron J

) Synchronisation en cours

Figure 33 : UR image 4

9) Une fois cette période de synchronisation effectuée, la page devient totalement
interactive et donc l'utilisateur pourra étre redirigé vers les pages lors d’un clic sur un

bouton.
LA A 2 Accueil x + 7)Requéte au
serveur pour
C G fruits.com e : récupérer les

paquets JavaScripts

>

8)Envoi des paquets
JavaScripts

Bienvenue sur fruits.com! <€

[Banane j

(@ Pomme J

L & Citron J

[‘/ La page est interactivej

Figure 34 : UR image 5

10) Lors du clic sur un élément pour naviguer sur une autre page, ici la page banane, le
layout sera directement affiché a I'’écran. Une demande d’export des données
relatives a cette page sera faite a la source d’informations.

(@S EUROPEAN
S W= HELHa

-
Parlementeuropéen [KEKER Haute £cole Lowsain en Hainaut

Banane X

C G fruits.com/banane b4

Bienvenue sur la page Banane

Recupération des données
= 10)Requéte a la
3, 4 source d’informations

GET /fruits/«

>~
L

N

Figure 35 : UR image 6

11) La source d’informations répond au navigateur en lui envoyant les données relatives
a la page souhaitée, ici la page banane.

12) Une fois les informations recues, le contenu dynamique est affiché a I'écran.

Banane x +

C G fruits.com/banane e

Bienvenue sur la page Banane

Description
12) Affich: d S £
cont)enulfiy:gemic:]ue -!LN“ Jaune ORequcteialla
source d’informations
< 1509 GET /fruits/
® 2¢ >

11)Réponse de la
o source d’informations
<

Couleur: Jaune
Poids : 150g
Prix : 2€

Figure 36 : UR image 7

(@S EUROPEAN
S W= HELHa

Haute Ecole Lousain en Hainaut

Un utilisateur navigue
sur un site web

Wambe Thomas «

[roo. 1)

o o |

Le navigateur fait une

—— T
[e o 1
requéte au serveur -

Le serveur traite la
requéte

Ecran blanc ou en
chargement, site pas
encore visible

Figure 37 : Schéma Universal Rendering 1

Lutilisateur clique sur
un bouton pour
accéder a une autre
page

Figure 38 : Schéma Universal Rendering 2

\

M

=
SN

i

Parlement européen

Processing
Demande de Envoi
ressources des ressources

o—

Demande de
<> ressources -
—
— O
—
Envoi

Sources d’informations

des ressources

Le navigateur affiche la page
et télécharge les fichiers
JavaScript

1
e= ||

Le site est visible mais
pas encore interactif

LIl

5

-
-
=08

Sources d’informations

Demande de Envoi
NUXTJS

Le navigateur exécute le code
sous Nuxt

|
On
1

—

Layout rendu sans
informations chargées

EUROPEAN
CONSERVATIVES
[S{®418 AND REFORMISTS

%%

Si nous devions résumer cette méthode de Rendering en deux images :

NUXTJS

Le navigateur exécute le code
sous Nuxt

|

Le site est visible mais
pas encore interactif

": S1B g
il
La nouvelle page est

rendue et est visible
par l'utilisateur

HELHa

Haute Ecole Louvain en Hainaut

g

La page est affichée a
I'écran

33

Suite a toutes ces explications, une comparaison s’impose :

Il y a quelques points importants lors de la création de site internet qui peuvent entrer en
compte lors du choix de sa méthode de rendu.

Il convient donc de se baser sur ces points pour avoir une comparaison.

Static Server Side Client Side Universal
Rendering Rendeing Rendeﬂg Rendeﬂg
Dynamique XX
Rapidité de
rendu a la X
premiére requéte
Rapidité de
rendu de la page
apres la premiére X
requéte
SEO XX
Flexibilité XX
Uniquement les | Uniquement les
Rafraichissement | Toute la page Toute la page éléments a éléments a
changer changer
Sur le client et
Sur le client. Le au build pour
Pas serveur web ne générer les
d’intelligence. Sur le serveur donne que des fichiers
Le serveur web. Le « code » fichiers statiques. Pas
Intelligence renvoie un s’exécute sur le statiques. Un d’intelligence
fichier statique. serveur serveur sur le serveur.
Le navigateur | majoritairement. d’application Un serveur
I'interprete. fournit les d’application
données. fournit les
données.

Figure 39 : Tableau récapitulatif Rendering

Légende : XX=Médiocre, X=Mauvais, - Bon, (28%9= Excellent

~ =~
SH o s, HELHa

Parlement européen ou P Haute Ecole Lousain en Hainaut

3.4.Présentation de Nuxt.js

Nuxt.js est un framework® open source® gratuit basé sur Vue.js (framework de JavaScript)
et de Node.js. Ce framework a été créé afin qu’on puisse concevoir des applications web
dites Universelles. Avec Nuxt.js il est possible d’élaborer des applications web dites « Single
Page Application » en CSR mais également de produire des applications sur base
du Universal Rendering. Ce framework a I'avantage d’offrir la possibilité de mettre en place
un trés bon SEO. Nuxt.js permet de créer son application web trés facilement, car celui-ci
rend également possible lintégration de modules et de librairies, ce qui permet aux
développeurs de gagner énormément de temps.

De plus, le « Routing » est autogéré. C’est-a-dire que la navigation entre les pages est déja
prévue. Au contraire de Vue.js par exemple, dans lequel un fichier de routage est
nécessaire grace a vue-router. Sur Nuxt.js, toutes les pages dans le méme dossier parent
peuvent étre accessibles en mentionnant une balise « NuxtLink » et le lien de la page.

Ici on retrouve la balise ouvrante et fermante
:—Nuxt Link t0=“/" « NuxtLink » qui permet de stipulu_e_r qu’un clic
Ll sur le champ « Log out » redirigera vers

D S Ayl 'adresse « / » qui est la racine de
I'application web.
Log out Le champ « class » ici présent ajoute
. simplement des éléments de style pour
NuxtLink rendre ce champ « Log out » plus agréable

Figure 40 : Exemple NuxtLink Simple visuellement.

Ces redirections peuvent également se faire en passant des paramétres. En voici un
exemple concret :

BNuxtLink
:to=" {name: 'HomePage', params: { offset : 0}}"
class="hover: from-pink-500 hover:to—-orange-500
s
HOME
NuxtLink

Figure 41 : Exemple NuxtLink avec parameétres

Ici on retrouve la balise ouvrante et fermante « NuxtLink » qui permet de stipuler qu’un clic
sur le champ « HOME » redirigera vers le lien portant le nom « HomePage » avec le
parameétre « offset » qui sera égal a 0.

Le champ « class » ici présent ajoute simplement des éléments de style pour rendre ce
champ « HOME » plus agréable visuellement.

> Un framework est une infrastructure de développement.
® Open source : Logiciels dont le code est public. Ces projets sont généralement le fruit d’une
collaboration entre programmeurs.

EUROPEAN
oA e HELH

°°°°° Haute Ecole Louvain en Hainaut

Gréce a ces balises « NuxtLink » la page est déja « prefetch » c’est-a-dire que le JavaScript
est déja traité ; la page est déja préte avant méme que le clic sur I'’élément balisé soit fait.
Cela est d0 au systeme de « Smart Prefetching ». Ce systéme fait en sorte de charger les
pages a lien visibles et de préparer la page afin de I'afficher plus rapidement si l'utilisateur
clique sur le lien. Ce processus ne s’effectue que lorsque le navigateur n’est pas occupé. Il
n’a pas lieu lorsque l'utilisateur est hors ligne ou a une connexion internet plus faible
(connexion 2G).

Nuxt.js est également trés Iéger. Avec sa configuration minimale en version Universal
Rendering il ne dépasse pas les 100Mo.

® @ ® M Infos sur TestTailleUni

— TestTailleUni 99,7 Mo
e Modifié : aujourd’hui 14:54
Figure 42 : Taille minimale Universal Rendering

Comme une application sous Nuxt.js peut étre développée en vue d’étre en Universal
Rendering, il est possible d’ajouter un « Layout » commun a toutes les pages. Ce qui permet
par exemple d’ajouter un en-téte et un pied de page identiques a toutes les pages.
Néanmoins il est possible de ne pas activer cette fonctionnalité sur certaines pages.

Nuxt.js offre la possibilité d’avoir et d’utiliser des composants. Un bout de code répétitif peut
étre exporté dans un composant afin de ne pas devoir réécrire ce code a chaque besoin.
Cela permet une meilleure lecture du code et évite la redondance (principe DRY : Don't
Repeat Yourself). Dans Nuxt.js les composants sont dits « Globaux » et donc peuvent étre
utilisés partout dans le projet, que ce soit dans les pages ou dans les « Layout ».

3.5.TailwindCss

Lors du projet de stage, il m’a été demandé d’ajouter tailwindcss pour une gestion plus
facile de I'’habillage du site grace a CSS.

Tailwindcss est un framework CSS permettant une meilleure gestion du CSS ainsi qu’une
facilité de développement. Ce framework a été développé en 2017 par Adam Wathan et est
encore aujourd’hui développé par son équipe et lui-méme.

Ce framework est basé sur les principes de classes utilitaires, qui sont des classes a un
seul et unique but. Il ne reprend pas le principe des classes sémantiques qui demandent
d’inventer des noms de classes pour chaque élément d’interface que I'on voudrait ajouter.

Toutefois, il est toujours possible de créer ses propres classes sémantiques pour pouvoir
identifier un élément plus rapidement, par exemple.

Tailwindcss a également la particularité d’étre intégré au fichier HTML. Il n’est donc pas
nécessaire de faire un second fichier dans lequel le CSS se trouvera.

Comme chaque classe a sa fonction bien précise, il nous en faudra plus pour pouvoir
effectuer la méme action que sur d’autres framework tel que Bootstrap par exemple. Si 'on
souhaite afficher un bouton bleu sur Bootstrap, deux classes suffisent :

EUROPEAN
oA e HELH

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

<0 href="#" class="btn btn-primary">

Bouton
</ o>

Figure 43 : Exemple bouton sous Bootstrap

Tandis qu’avec tailwindcss, pour afficher le méme bouton, il en faudra 6 :

Bouton

</o>

Figure 44: Exemple bouton sous Tailwindcss

Ceci peut paraitre perturbant au premier abord lors du développement mais cela permet
une grande personnalisation des éléments a afficher. Ces classes sont nombreuses et
fournies. Que ce soit pour de la typographie avec la classe « font-size » ou « font-color »
ou méme des effets avec la classe « shadow », il en existe suffisamment pour personnaliser
a souhait.

Toutes ces classes sont directement présentes dans le code HTML ce qui donne la
possibilité de ne pas devoir changer de fichier ou de quitter son code pour devoir changer
un simple élément comme une taille de police par exemple. L'emploi intensif de composants
est cependant a recommander pour assurer la maintenabilité.

Tailwindcss permet d’ajouter le fait qu’un élément visuel soit dit « Responsive ».
Effectivement avec I'arrivée massive des mobiles dans le marché du web, il est nécessaire,
voire obligatoire, d’avoir son application utilisable sur un plus petit écran.

Ce que permet tailwindcss de faire est d’ajouter des classes « Ig », « md », « sm » et bien
d’autres pour pouvoir afficher la classe adéquate selon la taille de I'écran.

Ce framework a la chance d’avoir une trés grande communauté qui met en ligne de
nombreux et différents composants disponibles sur le site de tailwindcss méme :
https://tailwindcomponents.com/

Sur ce site, on retrouve une documentation qui détaille toutes les classes disponibles avec
tailwindcss notamment, des exemples d’utilisation avec le code associé, ce qui facilite le
travail de recherche du développeur.

Ces différents concepts techniques étant désormais connus, nous pouvons entrer dans le
vif du sujet.

3.6.Projet de stage

Lors de ce stage en entreprise, I'objectif qui m'a été donné était de préparer la migration
d’'une Single Page application codé sous React.js, a une application en Universal Rendering
sous Nuxt.js.

EUROPEAN
e, HELHa

Parlementeuropéen XA Haute Ecole Lousain en Hainaut

Le passage de React.js a Vue.js, pour pouvoir l'installer sur Nuxt.js, n’étant pas ce qui a
été demandé, nous ne nous attarderons pas sur cette partie.

Pour prendre en main le framework Nuxt.js, il m’a été demandé de développer une
application en « Single Page Application » pour me familiariser avec le code Nuxt.js.

Cette application consiste a afficher des fiches de présentation des députés politique du
groupe ECR. Ces données sont disponibles dans une base de données. Cette application
étant en SPA, il a été nécessaire de passer par un serveur Node.js pour aller récupérer ces
données.

3.6.1.Serveur Node.js / Back-End

En premier lieu, nous avons dd faire le lien entre le serveur Node.js et la base données
PostgreSQL. Pour ce faire nous avons da importer les librairies compatibles avec la base
de données et créer une connexion entre cette derniére et le serveur node.js. Pour des
questions de facilité de relecture du code, nous avons préféré exporter le fichier de
configuration de la connexion sur un autre fichier. La connexion se fait comme suit :

Un appel au fichier de configuration de la base de données.

Figure 45 : Connexion au fichier db.config

Ensuite la configuration de la connexion se fait et un export de cette connexion est envoyé
au code l'ayant appelé.

® NodeServer > config > I8 db.config.js > ...
= require(‘pg').Pool

const pool = new Pool(
{
host: "localhost",
user: "postgres",
password:
database: "ECR",
port: 5432 ,

V&Y EUROPEAN
e s HELH
AND REFORMISTS

Haute Ecole Lousain en Hainaut

Une fois la connexion effectuée, il a fallu exporter les informations nécessaires au bon
fonctionnement du code. Comme nous n’avons pas besoin de toutes les informations de la
base de données en méme temps, nous faisons des requétes SQL’ précises.

Ces requétes sont envoyées a la base de données qui répond avec un objet que nous
transformons en format Json. Celui-ci est exporté afin que I'application SPA puisse I'utiliser.

Nous avons également configuré le serveur node.js pour que celui-ci envoie ces mémes
requétes SQL lorsqu’il regoit une certaine requéte depuis le « Front-End ». Cette
configuration s’est faite avec la méthode POST sur une certaine URL.

La méthode GET aurait pu étre utilisée, mais I'envoi de requétes entre le « Front-End » et
le « Back-End » avec la méthode POST a été imposée par le maitre de stage.

Un exemple de cette configuration sur 'URL « /ListPerson » du serveur node.js :

app.post('/ListPerson', async (req, res) => {
try{
const { search } = req.body
const { offset } = req.body
const { pageSize} = req.body

const query = {
text :
"SELECT persid, login, firstname, lastname,aspicture,nationality,salutation.title
FROM person
INNER JOIN salutation ON person.salutid=salutation.salutid
WHERE CONCAT(firstname,' ',lastname) ILIKE $1
ORDER BY lastname
OFFSET $2
LIMIT $3
\I
values : ['%'+search+'s',offset,pageSizel]
}
const result = await pool.query(query);
return res.status(200).json({
cards : result.rows
2);
} catch (err){
console.log(err.message)

Figure 47 : Exemple d'export de données Back-End

On retrouve bien la méthode POST utilisée mais également 'URL sur laquelle la requéte
doit étre effectuée pour exécuter le code. On trouve également un tag « async » dans celui-
ci simplement pour stipuler qu’il s’exécutera de fagon asynchrone.

Ensuite, sila connexion a la base de données a bien été effectuée, nous exécutons le code,
si ce n'est pas le cas, un message d’erreur, comprenant cette erreur, est envoyé a la
console. Cette erreur est plus souvent écrite dans des « log files %».

7sQL (Structured Query Language) est un langage de requéte structuré. Ces requétes sont utilisées
pour exploiter des bases de données relationnelles.

8 Log files : Fichiers de logs. Ces fichiers comprennent des informations liées a I'utilisation d’un
serveur.

EUROPEAN
] Sesis HELHa

Parlement européen SuUP Haute £cole Louvein en Hainaut

Sil'on rentre dans le code, alors on récupére dans le corps de la requéte (« req.body ») les
parameétres envoyés (nous verrons comment est constituée la requéte ci-dessous).

Une fois les parameétres stockés dans leurs variables respectives, nous décrivons une
nouvelle variable (« query ») qui prendra deux paramétres : un champ texte et un champ
valeurs. Cette variable sera en fin de compte notre requéte SQL.

Apres ceci, un envoi de la requéte SQL a la base de données est effectué (« await
pool.query(query) » et celle-ci nous envoie les informations que nous formatons en format
Json (« return res.status(200).json ». Ce texte en format Json sera stocké dans un tableau
d’objets appelé « cards » (« cards : result.rows »).

Ce tableau d’objet « cards » comprend chaque élément du « SELECT » de la requéte SQL
ainsi que la valeur « salutation » présente dans la fonction « INNER JOIN » pour chaque
député.

Ce genre de configuration est effectuée autant de fois que des paquets d’informations
différentes devront étre envoyées a la « Single Page Application » qui est, dans ce cas-ci,
la partie « Front-end » du projet.

Cette derniére n’est plus codée sous node.js mais bien sous Nuxt en version SPA.

3.6.2.Single Page Application / Front-End
Le framework Tailwindcss, cité précédement, a été utilisé pour mettre en forme cette partie.
Pour récupérer des informations sur une page du c6té « Front-end » depuis le serveur
Node.js également appelé « Back-end », il faut configurer I’envoi de ces requétes citées

auparavant.

Un exemple de configuration de I’envoi de ces requétes du coté SPA :

request= await axios
.post('http://localhost:8080/ListPerson’, {

search : mysearch,

offset : this.offset,

pageSize: this.pageSize

}).then(res => {
(this.cards = res.data.cards)

1
)
) .catch(err =>console.log(err.message))

Figure 48 : Exemple d'import de données Front-End

Dans ce code on retrouve le champ « await » qui est en lien étroit avec le tag « async »
situé plus haut dans le code (le champ « async » non montré par facilité d’explications).

EUROPEAN
oA e HELH

eeeee Haute Ecole Lousain en Hainaut

On retrouve également la requéte avec la méthode POST et son URL sur laquelle on doit
aller chercher les informations (cette URL correspond a celle du serveur Node.js configuré
plus haut). Cette requéte contient des parameétres dans son corps et sont également
envoyés sur le cdté « Back-end ».

Une configuration spécifique au niveau du serveur Node.js est nécessaire pour que la
requéte soit entendue sur le bon port :

app. listen(8080, function(]
console.log('Server is running on PORT:',8080)

)

Figure 49 : configuration de I'écoute du serveur node.js

Gréce a cette configuration présente sur le serveur Node.js, celui-ci écoute les requétes
arrivant sur ce port. Le serveur peut donc répondre aux requétes selon les adresses
renseignées du coté « Front-End »

Ensuite, une fois la requéte envoyée et sa réponse regcue avec le tableau d’objets « cards »,
déja vu, on égale un nouveau tableau d’objet, appelé, lui aussi, « cards », présent sur le
« Front-end » a la valeur du « cards » envoyé par le serveur Node.js («
this.cards=res.data.cards »).

En cas d’erreur dans cet envoi de requéte et lors de manque de réponse du serveur, un
message d’erreur, comprenant ladite erreur, est envoyé a I’écran.

Ce genre de configuration est effectuée autant de fois que des paquets d’informations
différents sont recus sur 'une des pages de la « Single Page Application ».

Par contre, ce tableau d’objets « cards » n’est présent que sur la page sur laquelle il a été
appelé. Si nous voulons le réutiliser ailleurs sur le « Front-End », il faut passer cet objet en
parameétre de I'appel de la page ou du composant.

Avec ces données présentes sur la page, nous avons pu commencer a les traiter et a les
afficher. Mais comme chaque entrée (ligne) de la base de données comprend les
informations de chaque député au sein du groupe politique ECR. Nous devons donc faire
en sorte d’afficher ces personnes sous forme de cartes, et ce, dynamiquement, afin de
pouvoir ajouter, ou retirer, des députés, aisément, sans devoir changer une quantité
importante de code dans I'application.

Pour ce faire Nuxt.js, propose de créer des composants afin de pouvoir réutiliser un méme
élément plusieurs fois. Les codes de ces éléments sont donc placés dans un dossier
« Composants », ce qui facilite 'appel a ces codes.

L’affichage des différentes cartes se fait par ce biais. Donc, nous avons dd créer un
composant, appelé « Card °», qui affichera certaines des données d’un député.

% |l faut bien différencier le tableau d’objets « cards », le composant « Card » et I'objet « card ».

V75 S\\
({ 2 n EUROPEAN
S oA e HELH

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

Ce composant n’a pas la possibilité de lire le tableau d’objets « cards » présent sur la page.
L’appel de ce composant doit donc se faire avec un parameétre lui passant le tableau en
question.

Pour que les cartes de chaque député au sein du groupe politique ECR soient affichées,
nous avons besoin de mettre en place une boucle au niveau de I'affichage.

Le code de I'appel de ce composant :

Card

v-for="card in cards"
:card="card"

:key="card.persid"
class="rounded-1lg B bg-gray-400 p-4"

Figure 50 : Appel du composant Card

Gréace a Nuxt.js, I'appel des composants se fait simplement en mentionnant le nom du
composant (tant que le code de celui-ci se trouve dans le dossier composant du projet).

On voit effectivement que l'instruction « v-for » est présente dans ce code. Cette instruction
Vue.js permet de faire une boucle « for ». Ce genre de boucle est une instruction commune
a bien des langages de programmation et permet de faire des itérations.

Ici, sa version « For-in » est utilisée. Elle sert simplement a faire une boucle qui parcourra
tous les éléments présents dans le tableau « cards ». Un nouvel objet « card » prendra la
valeur de I’élément suivant du tableau « cards » a chaque itération.

Ensuite, on retrouve le tag «: card = “card” » qui passe ledit objet au composant.
Et le tag « :key= “card.persid“ » qui permet de donner un identifiant unique a chaque objet
« card ».

Le champ « class », ici présent, ajoute simplement des éléments de style pour rendre
I’'affichage des cartes plus agréable visuellement.

Une fois les informations de I'objet « card » passés au composant « Card », celui-ci peut
les traiter et les afficher comme nous le souhaitons.

n EUROPEAN
oA Consmuimes HELH

°°°°° Haute Ecole Louvain en Hainaut

L’affichage de ces données se fait, par exemple, comme suit :

class="mx-3 text-left font-semibold text-gray-900
{{card.title}} {{card.lastname}}

an class="text-sm text-gray-600 text-opacity-75

{{card.firstname}}
span

P
Figure 51 : Exemple d'affichage des données

Le champ « class » sert encore une fois a ajouter des éléments de style a I'affichage des
données pour les rendre plus agréables visuellement.

La balise « <p> </p> » sert simplement a dire que c’est un paragraphe.
Dans celui-ci on retrouve les champs « {{card.title}} » et « {{card.lasthname}} ».
Cette facon d’écrire permet d’afficher, a I'’écran, la valeur de la variable citée entre les “{{ }}*

Ici, les différentes variables ont une nomenclature spécifique. En effet celles-ci sont
relatives a I'objet initial « card ». Cet objet comprend bien des variables (on peut les
retrouver au niveau de la requéte SQL). Ces variables sont donc accessibles depuis I'objet
« card » en spécifiant la variable en question. Pour afficher le titre de la personne stocké
dans 'une des cartes, nous écrirons « card.title ». Et ce pour toutes les variables se trouvant
dans « card ».

La balise « », quant a elle, n’a pas une spécificité d’utilisation. Elle sert
simplement a grouper des éléments pour qu’ils puissent, par exemple, avoir le méme
attribut « class ».

La balise «
 » est une balise qui ne se ferme pas, au contraire des deux balises
précédemment citées, et intégre simplement un saut de ligne dans le texte.

Pour finaliser la carte, nous avons décidé d’ajouter une photographie du député, si nous
disposons de celle-ci. Dans ce but, chaque image disponible a été stockée au sein d’un
méme dossier. Et chaque image a été renommée par le login du député.

On affiche cette photographie grace a ce code :

ng

v-if="card.aspicture"
w=12 h-12 rounded-full object-cover mr-1 shadow"

class=
:src="require(' ~/assets/images/photos/${card.login}.jpg)"

alt="avatar"
Figure 52 : Affichage de la photographie du député.

EUROPEAN
e, HELHa

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

Cet affichage se fera grace a la balise « ». Seulement, comme dit précédemment,
chaque député n’a pas forcément de photographie lui étant liée. Pour tester cela nous
utilisons l'instruction « v-if ».

Cette instruction permet de poser une condition sur I'affichage du bloc. Dans ce cas-ci, la
condition est la variable « card.aspicture ». Si cette variable est égale a vrai ou est
supérieure a zéro, alors le bloc sera affiché.

Si ledit député a bien une image qu’il lui est associée, alors nous allons la chercher grace
au tag « :src ». Ce tag permet a la balise « » de savoir ou aller chercher I'image.
Dans ce cas-ci, comme I'image doit étre affichée dynamiquement selon le député, nous
devons intégrer une variable dans la source. C’est pour cela que la fonction « require() »
est utilisée ici.

Le tag « alt » permet de remplacer, en cas de probléme d’affichage de I'image, celle-ci par
un texte prédéfini.

Nous avons décidé de faire apparaitre une image par défaut si 'un des députés n’a pas de
photographie lui étant associée. Ces images par défaut étant genrées, nous avions donc
deux possibilités qui s’offraient a nous.

Soit le député était de genre féminin, donc I'image par défaut était de genre féminin.
Soit le député était de genre masculin, donc I'image par défaut était de genre masculin.

En voici le code associé :

LMNQA

v-else-if="card.title === 'Mrs' || card.title == 'Miss' "
class='
src=""~/assets/images/photos/mrs. jpg"

w-=12 h-12 rounded-full object-cover mr-1 shadow"

alt="avatar"
v-else
class='
src="~/assets/images/photos/mr. jpg"

w-=12 h-12 rounded-full object-cover mr-1 shadow"

alt="avatar"
Figure 53 : Affichage de la photographie genrée par défaut

Si la réponse du test précédent « v-if="card.aspicture“ » est « faux » ou égal a zéro alors
linstruction « v-else » est appelée. Ici comme un test supplémentaire est nécessaire afin
de déterminer le genre du député, ce n’est pas cette instruction qu'on a utilisée mais
Pinstruction « v-else-if » qui permet de refaire un test si le précédent est non concluant.

Ce test s’effectue maintenant sur le titre de la personne. Si ce titre est « Mrs » ou « Miss »
alors I'image associée et répertoriée dans le tag « src » est I'image par défaut de genre
féminin.

Sinon I'image par défaut de genre masculin est utilisée.

EUROPEAN
e, HELHa

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

Un apercu du rendu visuel de ces cartes avec les valeurs d’affichage par défaut :

Q Mrs Aguilar ™ MrBerlato Mr Beszlej ") MrBielan
2)/ Sergi b ;‘r
0 Mr Bismpa () MrBourgeois o Mr Brachowicz > MrBrudzifski
T
) cihers & ! <o i
£ MrBuxadé Villalba a Mrs Chloupkova @ Mr Czarnecki o Mr Darke
> 2 L
o Mr De Jong g Mrs De La Pisa Carrién “ Mrs Dimitrova O Mr Dinga

Figure 54 : Apergu des cartes

3.6.4.Page « détails »

En plus d’afficher les photographies et les informations de chaque député sur cette carte,
nous avons lié une nouvelle page, qui donnera plus de détails sur le député en question.

Pour ce faire nous avons utilisé I'outil « d’autoRouting ». Comme cette page ne comprend
pas les mémes informations, vu que chaque carte est différente, il faut, en plus de passer
la page, passer également des paramétres. Ceux-ci permettront de différencier une carte
d’une autre et donc, un député d’un autre.

Cette redirection est faite comme suit :

NuxtLink
:to="{name: 'Details’', params: { persid: card.persid}}"
class="bg-gray-200 min-w-full rounded-1g shadow"

class="flex items-center

class="rounded-full"
div
NuxtLink

Figure 55 : Navigation vers la page de détails

Nous retrouvons la balise « d’autoRouting » « NuxtLink » avec ses paramétres comme
expliqué ci-dessus. Ici on redirigera, lors du clic sur une carte, I'utilisateur vers le lien ayant
comme nom « Details ». De plus, avec le paramétre « persid », on envoie la variable
« card.persid » a la page pour afficher les informations de la bonne carte.

Une fois la page de détail appelée, celle-ci doit aller chercher, sur le serveur, des
informations complémentaires sur le député en question. Cette requéte se fait comme les
précédentes. Cependant 'URL visée et les paramétres envoyés ne sont pas les mémes.

EUROPEAN
&) e HELHa

eeeee Haute Ecole Lousain en Hainaut

request = await axios
.post('http://localhost:8080/Details’,{
persid nis.$nuxt._route.params.persid

}).then(res => {
his.card = res.data.card

}

).catch(err =>console.log(err.message))

Figure 56 : Requéte au serveur Node.js de la page de détails

Ici PURL pointe toujours vers I'adresse du serveur Node.js mais sur le lien « /Details »
Le parameétre passé a cette requéte est également la valeur de la variable « persid » passé
lors de la redirection via « NuxtLink ».

Du coté Node.js, la configuration est partiellement identique a celle sur 'URL
« [ListPerson ».

app.post('/Details', async(req,res)=>{
try{

{ persid } = req.body

console. log("values of persid :" + persid)
query = {
text :
"SELECT *
FROM person
INNER JOIN salutation ON person.salutid=salutation.salutid
INNER JOIN countries ON person.nationality=countries.shortcut
WHERE persid=$1",
values : [persid]

result = await pool.query(query)
return res.status(200).json({

card : result.rows[0]

}catch(err){
console. log(err.message)

Figure 57 : Configuration de I'écoute de la requéte /Details

Ici TURL touchée est « /Details » et le parameétre récupéré est « persid ».

EUROPEAN
e, HELHa

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

La requéte SQL change également. Celle-ci va aller chercher toutes les informations
(caractérisé par I'astérisque) présentes dans la base de données, pour le député ayant
comme valeur de « persid », la valeur passée.

Un apercu du rendu visuel de cette page de détails :

& About :
First name : Mazaly Gender : Female
Last name : Aguilar Email: mazaly.aguilar@ep.europa.eu
Country : Spain = Nationality : ES

Birthdate :

Mrs Mazaly Aguilar

Figure 58 : Apercu de I'une des pages de détails

3.6.5.Barre de navigation.

Apres cela, nous avons décidé de créer un composant « NavBar » qui sera une barre de
navigation commune a la majorité des pages du site. Cette barre de navigation comprendra
le logo du groupe ECR et des boutons pour pouvoir naviguer entre les différentes pages.
Le bouton « Home » qui permettra de revenir a la page d’accueil. Le bouton « Log in / Sign
in » qui permettra de rediriger vers une page d’authentification ou de création de compte
quand celui-ci sera mis en place. Et un bouton « Log out » pour se déconnecter.

Les différentes redirections sont faites grace a « I'autoRouting » de Nuxt.js avec les balises
« <NuxtLink> ».

La barre de navigation sera présente sur la page d’accueil et la page de détails mais
absente de la page d’authentification. Cette barre de navigation se présente comme suit :

Home Login/Signin Log out

GROUP

Figure 59 : Apergu de la barre de navigation

3.6.6.Recherche dans les cartes
Une autre fonctionnalité a été mise en place sur le site. En effet, nous avons pensé qu’une
possibilité de recherche d’'un député ou d’une liste de députés par leurs nom ou prénom
pourrait étre pratique.

Dans ce but nous avons di styliser une zone d’entrée de caractéres pour effectuer cette
recherche.

()

Figure 60 : Apergu de la barre de recherche

Cela a été majoritairement fait grace aux tags « class » et un import d'images sous format
« Svg »,

EUROPEAN
e, HELHa

Haute Ecole Lousain en Hainaut

Parlement européen

Par contre, la recherche en elle-méme se fait grace a I'appel d’'une fonction.

Voici la configuration de la zone d’entrée :

class="h-10 py-2 pr-12 pl-2 rounded-full text-x1 focus:outline-none"

placeholder="Search"
v-model="search"
@input ="newsearch()"

Figure 61 : Configuration de la zone d'entrée

La balise <input> est une balise qui permet a I'utilisateur de saisir des données.
Le tag « placeholder » sert a afficher du texte par défaut lorsque I'utilisateur ne renseigne
rien dans la zone d’entrée.

L’instruction « v-model » permet de stocker dans une variable, ici « search », le texte saisi
dans la zone d’entrée.

Le champ « @input » est un tag d’événement. Chaque fois que l'utilisateur va écrire
quelque chose dans la zone d’entrée, la fonction « newsearch() », déclenchée par
I’événement « @input », va étre appelée.

La fonction est la suivante :

newsearch
mysearch

if(this.search){

mysearch =this.search
Yelse{

mysearch = 'S’

request= await axios
.post('http://localhost:8080/ListPerson’,{
search : mysearch,
offset : this.offset,
pageSize: this.pageSize
}).then(res => {
(this.cards = res.data.cards)

).catch(err =>console.log(err.message))

EUROPEAN
e, HELHa

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

Lors de l'appel de cette fonction asynchrone, une variable nommée « mysearch » est
instanciée. Ensuite, un test sur la variable « search » présente dans l'instruction « v-model »
est effectué : la variable « search » existe-t-elle ?

Si c’est le cas, cela veut dire que l'utilisateur a déja inscrit quelque chose dans la zone de
texte. Auquel cas, ce texte est enregistré dans la nouvelle variable « mysearch ».

Si « search » n’existe pas, alors la variable « mysearch » vaudra le caractére « % »
(n’importe quel caractére ou groupe de caracteéres).

Ensuite, la variable « mysearch » est envoyée dans la requéte au serveur Node.js comme
vu précédemment.

Sur le serveur Node.js, la variable est récupérée et est utilisée dans la requéte SQL.
Voici la requéte SQL en question :

query = {
s =
"SELECT persid, login, firstname, lastname,aspicture,nationality,salutation.title
FROM person
INNER JOIN salutation ON person.salutid=salutation.salutid
WHERE CONCAT(firstname,' ',lastname) ILIKE $1

ORDER BY lastname
OFFSET $2
LIMIT $3

’

values : ['%'+search+'s',offset,pageSize]

Figure 63 : Requéte SQL de la page d'accueil

On retrouve, dans la fonction« WHERE » une concaténation du prénom et du nom et une
fonction « ILIKE » suivit d’un « $1 » ($1 prend la valeur de la premiére variable présente
dans le champ « values »).

Cette ligne consiste a préciser sur quel paramétre la sélection dans la base de données va
étre effectuée. Ici on peut traduire cela par : « Ou “prénom + nom“ contient une suite de
caractéres égale a la variable “search” »

Par exemple si le nom et prénom sont « Mazaly Aguilar », la concaténation des deux feront
« MazalyAguilar». Si la variable « search » équivaut a toute suite de caractéres qui
compose cette concaténation, alors les données de Mrs Mazaly Aguilar seront envoyées.

Au départ, un nombre fixe de cartes était affiché a I'’écran. Ce nombre délibérément choisi
était 16. Ce qui permettait d’avoir quatre cartes par rangée et par colonne. Seulement, la
base de données contenant 48 députés nous ne pouvions les voir tous. Il a alors fallu mettre
en place un systéme de pagination. Avec cette navigation entre pages, il était souhaitable
qu’une sélection du nombre de cartes par page soit aussi mise en place.

Nous avons d’abord commencé par mettre en place quelques boutons fixes pour pouvoir
accéder a ces pages contenant différentes cartes.

EUROPEAN
4] it HELHa

Parlement européen SuUP Haute £cole Louvein en Hainaut

Previous 1 2 3 Next

Figure 64 : Affichage de la pagination

L’affichage des cartes se fait sur la totalité des cartes présentes dans l'objet « cards »
envoyé par le serveur Node.js. Le serveur, lui, récupére ces cartes grace a la requéte SQL.

Il faut donc limiter la récupération des données de la requéte SQL pour limiter le nombre
de cartes a l'affichage. Cette fonction se nomme « LIMIT » dans cette requéte.

De plus, pour afficher les cartes a partir du deuxiéme lot de cartes (lorsqu’on navigue sur
la deuxieme page), il faut spécifier a la requéte a partir de quelle carte il commencer a les
récupérer. Cette deuxiéme fonction se nomme « OFFSET » dans la requéte SQL.

Il faut donc agir sur la fonction « OFFSET » si on veut changer de page, celle-ci contenant
également 16 cartes. En théorie, si la premiére page comporte 16 cartes (de 0 a 15), alors
la deuxieme commencera a « TOFFSET » de valeur 16 et ainsi de suite avec les multiples
de 16.

Un exemple sur le bouton nommé « Previous » :

l class="flex ml-10 mb-10"

v=if=" this.offset === @ " disabled class="mx-1
Previous
span v-else @click="offsetter($event)"
NuxtLink :to=" {name:'HomePage'}"
name="Prev"
class="mx-1 px-3 py-2 BMbg-gray-200 [Otext-gray-700

Previous
NuxtLink

Figure 65 : code du bouton Previous et Next

Ici, la balise permet de créer une liste structurée d’éléments gréace aux balises .
Chaque bouton sera présent dans une balise afin de structurer la liste des boutons.

Une variable « offset » est créée au niveau de la page « Home » dans le « Front-end »
(code non présent sur cette image). Elle est ensuite passée au niveau du server Node.js
grace aux requétes HTTP. Cette variable est ensuite introduite dans la requéte SQL.

EUROPEAN
e, HELHa

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

On retrouve a nouveau ici l'instruction « v-if » permettant de faire un test sur la valeur de
cette variable « offset ». Ce test est une vérification de sa valeur. Si elle équivaut strictement
a 0 alors le bouton est désactivé.

Sinon, un événement « @onclick » qui appellera la fonction « offsetter » est créé.

Cet événement permet, lors du clic, ici sur le bouton, d’appeler une fonction par exemple.
Ici, on passe également un paramétre a cette fonction. Ce parameétre « $event » permet de
connaitre sur quel bouton l'utilisateur a appuyé. Nous reviendrons sur cette fonction plus
loin.

Ensuite, nous retrouvons une redirection vers le nom du lien « HomePage » et un attribut
« name » qui est donné a ce bouton lors de la redirection.

Le code de ce bouton est identique au code du bouton « Next ».

Par contre, en vue de passer sur un affichage dynamique de bouton, il a été préférable de
coder les boutons entre « Previous » et « Next » de fagon dynamique.

Il a fallu, tout d’abord, connaitre le nombre de pages qu’il y aurait sur le site. Chacune
comprenant 16 cartes par page.

Nous devions connaitre le nombre total de cartes. Pour ensuite diviser ce nombre par le
nombre de cartes par page. Nous aurions ainsi notre nombre total de pages.

Le nombre total de cartes est susceptible de changer si 'un des députés devait quitter le
groupe ECR ou que de nouveaux députés venaient a étre insérés dans la base de données.
Une nouvelle requéte a cette base de données est donc requise afin de connaitre le nombre
exact de députés.

Cette requéte s'initialise d’abord du coté « Front-end » comme-suit :

ync InitPager(){
request= await axios
-post(*http://localhost:8080/CountPersons’, {

}).then(res => {
(this.totalPersons=res.data.persons)
}).catch(err =>console.log(err.message))
this.numPages = this.totalPersons/this.pageSize

+

Figure 66 : Code de la fonction InitPager

L’'URL est celle du server Node.js sur le lien « /CountPersons ».

La réponse sera introduite dans la variable, créée au préalable, « totalPersons ». Et cette
variable est directement utilisée pour faire le calcul, expliqué ci-dessus, afin d’avoir le
nombre de pages total.

n EUROPEAN
oA Consmuimes HELH

eeeee Haute Ecole Lousain en Hainaut

Du cbté serveur, la réception de la requéte est identique aux autres expliquées
précédemment. Cependant, la requéte SQL change énormément de ce qui a déja été
expliqué :

query = {
TexXT =
"SELECT COUNT(*) numPersons
FROM person

}
const result = await pool.query(query);
return res.status(200).json({

persons : result.rows[@].numpersons
Figure 67 : Requéte SQL comptant le nombre de député

Ici, la fonction « SELECT COUNT() » permet de compter le nombre de lignes dans une
table. En lui spécifiant le caractére astérisque « * », nous lui demandons de compter toutes
les lignes présentes dans la table « person ». Ce résultat sera stocké dans une colonne
appelée « numPersons ».

Une fois la requéte SQL effectuée, la réponse est stockée dans la variable « persons » et
est envoyée au « Front-end ».

Une fois ce nombre de pages récupéré sur la page d’accueil, I'affichage des boutons de
redirections par pages, peut se faire.
Ces boutons se font comme-suit :

v-for="page ii 1s.numPages"
: key="page"

;pan v-if="offset === ((page-1)*pageSize)"
disabled class="mx-1 px-3 py-2 Ebg-green-200 O text-gray-700
{{page}}

;pan v-else @click="offsetter($event)"
NuxtLink :to=" {name:'HomePage'}"
class="mx-1 px-3 py-2 Hbg-gray-200 Otext-gray-700 Ohover:
:name="page"
{{page}}
NuxtLink

Figure 68 : Affichage des boutons dynamiques

EUROPEAN
oA e HELH

eeeee Haute Ecole Lousain en Hainaut

On retrouve l'instruction « v-for » permettant d’afficher le nombre exact de boutons.

Un test sur la valeur de la variable « offset » est également présent. Ce test permet de
savoir si cette valeur est égale au nombre de cartes sur une page multiplié par le numéro
de la page moins 1. Avec ce test, on regarde si la page affichée n’est pas la page sur
laquelle le bouton redirige. Auquel cas, ce bouton doit étre désactivé et une indication
visuelle doit étre mise en place.

Si ce test n’est pas bon, alors un événement « @click » est créé. Cet événement appelle
également la fonction « offsetter() » en lui passant la variable « $event ».

Ensuite, une redirection vers la page d’accueil est effectuée et un nom est donné a ce
bouton. Son nom est donné grace a la variable « page » présente dans linstruction « v-
for ». Celui-ci est un nombre compris entre 1 et le nombre total de pages.

Voici le code de la fonction « offsetter() » :

offsetter(e){

if(e.srcElement.name=="'Prev'){
is.offset=this.offset-this.pageSize

}
if(e.srcElement.name=="Next"'){
his.offset=this.offset + this.pageSize
}
for (let page = 1; page <= this.numPages; page++) {
if(e.srcElement.name==page){
his.offset=((page-1)xthis.pageSize)

}

his.newsearch()

Figure 69 : Code de la fonction offSetter

On retrouve, encore une fois, une fonction asynchrone.
Celle-ci recoit un paramétre comprenant les informations relatives au bouton sur lequel
I'utilisateur a cliqué.

Cette fonction comprend trois tests qui ont pour but de donner la bonne valeur a la variable
« offset ». Ces tests sont effectués sur le nom des boutons. Il y a trois possibilités suite aux
explications données ci-haut.

La premiére, le nom est égal a « Prev », nom donné au bouton « Previous ». Auquel cas,
une simple soustraction du nombre de cartes par pages a la variable « offset » est opérée.
Cela nous donnera la page précédente.

EUROPEAN
oA e HELH

eeeee Haute Ecole Lousain en Hainaut

Deuxiéme cas, le nom testé est égal a « Next », le nom du bouton « Next ». Alors une
addition du nombre de cartes par pages et de la valeur de la variable « offset » est effectuée.
Cela nous affichera la page suivante.

Troisiéme cas, le nom est un nombre compris entre 1 et le nombre total de pages. Pour
effectuer ce test une boucle est nécessaire. On retrouve ici une instruction « for » afin de
tester tous les noms possibles dans ce cas. Si le nom du bouton cliqué est égal a I'une de
ces possibilités, la valeur de la variable « offset » sera modifiée. Cette valeur sera égale a
la valeur du bouton cliqué, diminué de 1, multipli€ par le nombre de cartes par page.

Ce troisiéme cas nous affichera la page du bouton cliqué.

Un exemple : si le nombre de cartes par page égale 16 et que le bouton cliqué est le
troisieme, le calcul est le suivant : (3-1) x 16 ce qui donne un « offset » de 32.

Pour éviter tout débordement sur la valeur de la variable « offset », une fonction
« offsetSecure() » a été mis en place.

Cette fonction a pour seul but d’égaler cette valeur a zéro lorsque celle-ci descend dans les
négatifs. Et de I’égaler a sa valeur maximale lorsque celle-ci la dépasse.

Cela se fait comme-suit :

offsetSecure(){

if(this.offset < 0){
his.offset = 0@

}

if(this.totalPersons!=0){
' this.offset > this.totalPersons-this.pageSize){
this.offset = this.totalPersons-this.pageSize

Figure 70 : Code de la fonction offsetSecure

Lorsque la valeur de la variable « offset » est strictement inférieure a zéro, celle-ci est
égalée a zéro.

Le deuxiéme test doit s’effectuer lorsque la requéte permettant de connaitre le nombre de
députés a été envoyée (quand la valeur de totalPersons n’est plus égale a zéro). Une fois
que cela est vérifié, alors, nous testons si l'offset est strictement supérieur au nombre
maximal. Ce nombre est défini par la soustraction du nombre de cartes affichées par page
du nombre total de députés. Si ce nombre est dépassé alors la valeur de la variable
« offset » est égalée a cette valeur.

EUROPEAN
oA e HELH

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

Ensuite, il a fallu mettre en place la sélection du nombre de cartes par page.

Des boutons fixes ont donc été créés. Ceux-ci resteront fixes et prendront la valeur
souhaitée par le développeur. Ici, les quatre valeurs ont été choisies délibérément. Il s’agit
de 4, 8, 12 et 16 cartes par page.

Ces boutons sont codés de la méme fagon que pour la pagination a I'exception de la
fonction appelée « paginer() » et non « offsetter() ». Un paramétre comprenant I'événement
a été également passé a la variable.

paginer(e){
1s.0ffset=0
is.pageSize=1xe.srcElement. id

his.newsearch()

Figure 71 : Code de la fonction paginer

Cette fonction, aussi asynchrone, permet de remettre la valeur de « l'offset » a zéro. Et
d’égaler le nombre de cartes a afficher par page a la valeur de I'id du bouton cliqué.

Il est & noter que, I'id du bouton a été au préalable égalé a la valeur du bouton.

La fonction « newsearch() » visible souvent en fin de fonction est la fonction permettant
I’envoi de la requéte sur « /ListPerson » vu au point « Single Page Application / Front-End »
de ce chapitre.

Pour finaliser ce point, cette fonction « newsearch() » appelle également les fonctions
« InitPager() » et « offsetSecure() » vues précédemment, avant d’envoyer la requéte au
serveur.

Une fois toutes ces fonctionnalités ajoutées au site, nous pouvions le passer sous un
environnement dit Universal Rendering. Il a fallu recommencer un nouveau projet sous
Nuxt.js afin de s’assurer que celui-ci prenne bien les paramétres d’un site sous Universal
Rendering.

Dans cette configuration, le serveur Node.js est interne au projet. Le projet Nuxt.js intégre
totalement le serveur Node.js, celui-ci étant lancé en méme temps que I'application. Ainsi
le « Font-End » et le « Back-end » sont lancés simultanément au sein du méme projet.
L’avantage de cette configuration est qu’il n’est plus nécessaire d’avoir plusieurs URL
indépendantes entre le « Front-End » et le « Back-end ». En effet, dans la configuration
précédente, le serveur tournait, dans notre cas, sur le port 8080 de I'adresse locale de
'ordinateur. Et la partie « SPA » tournait, quant a elle, sur le port 3000 de cette méme
adresse. Avec cette nouvelle configuration, les deux parties tournent sur le méme port qui
est le port 3000 de I'adresse locale de I'ordinateur utilisé.

V&Y EUROPEAN
e, HELH

Parlementeuropéen KKK Haute £cole Louvein en Hainaut

Notre configuration de l'application dans ce mode de Rendering permet également un
export des données vers I'extérieur. C’est-a-dire que les données sont également
accessibles via une adresse indépendante de la partie « SPA ». Cette exportation se fait
sur 'adresse « /api » du port 3000 de I'adresse locale. L'URL compléte pour y accéder est
la suivante : http://localhost:3000/api.

Cette adresse n’est accessible que sur la machine qui héberge I'application. En production,
cette adresse ne sera plus en local mais il restera toujours « /api » en fin d’adresse.

Cette exportation vers I'extérieur se fait grace a ce code :

export default {
path: '/api',

handler: app

Figure 72 : Exportation /api

Ici, nous pouvons renseigner 'adresse d’export de ces données en format Json.
Gréce a cet export de données, le code reste presque inchangé.
Comme l'adresse d’accés aux données a changé, nous devions également modifier

'adresse des requétes envoyées depuis la partie « Front-End ». Celles-ci prennent la
nomenclature suivante :

.post('http://localhost:3000/api/ListPerson’,

Figure 73 : Import des données /ListPerson

.post('http://localhost:3000/api/Details’,{

Figure 74 : Import des données /Details

.post('http://localhost:3000/api/CountPersons’,{

Figure 75 : Import des données /CountPersons

n EUROPEAN
oA Consmuimes HELH

uuuuu Haute Ecole Lousain en Hainaut

3.6.9.Sessions et cookies
Un ajout de fonctionnalité a été proposé par le maitre de stage ; il s’agit d’un systéme de
sessions et de cookies. Ceci permettra d’initier un systéme d’authentification des
utilisateurs par la suite.

Ce systéme se configure comme-suit :

app.use(session({
store: new pgStore({

pool:pool,

tableName: 'user _sessions
1),
cookie: {
maxAge: 1000 x 30,
httpOnly: true,

Figure 76 : configuration des sessions et cookies

Gréce a la librairie « express-session » nous avons la possibilité d’ajouter des sessions au
sein de chaque réponse aux requétes regues.

Ces sessions sont également stockées dans notre base de données dans une table
s’appelant « user_sessions ».

Ces sessions permettent d’ajouter a ces réponses des cookies. Ces cookies nous donnent,
notamment, la possibilité de donner une date d’expiration a ces sessions.

L'avantage des sessions est qu'elles permettent une persistance de l'information propre a
cet utilisateur, a cette session, c6té serveur. Le web étant par définition « stateless » (sans
état), cette persistance n'est pas possible sans session.

EUROPEAN
oA e HELH

eeeee Haute Ecole Lousain en Hainaut

3.6.10.Site complet

La page d’accueil du site, avec tous ces ajouts, ressemble actuellement a ceci :

R Home Login/Signin Logout

Nombres de cartes par pages:
4 8 12 1.

Previous 1 2 3 Next

Figure 77 : affichage de la page d'accueil au complet

Lors du clic sur 'une des cartes, la page de détails s’affiche comme suit :

C Home Login/Signin Log out

& About :
First name : Mazaly Gender : Female
Last name : Aguilar Email mazaly.aguilar@ep.europa.eu
Country : Spain = Nationality : Es
Birthdate :

Mrs Mazaly Aguilar

Figure 78 : Affichage de la page de détails au complet

Et lors de I'accés a la page de connexion, cette page, ci-dessous, s’affichera :

YN

Back

okt

RO

o
c

\
Connection

E-MAIL
E-mail adress
PASSWORD

Mot de passe

Forgot your password 2 or Sign-in

Figure 79 : Affichage de la page statique de connexion

: (6428 AND REFORMISTS
Parlementeuropéen CEKEEAd Haute Ecole Louvain en Hainaut

(@« EUROPEAN
Wambe Thomas & EvRopE HELHa 58

3.7 Alternatives
Des alternatives a I'utilisation de Nuxt.js sont disponibles tel que Next.js, Nestjs, ...

Next.js est la version « Universal » de la bibliothéque « React ». Ce framework est créé par
« Vercel » avec I'aide de Google et de Facebook. Next.js est utilisé par de célébres sites
tel que Netflix, Nike, TikTok, ... La liste n’est, bien s(r, pas exhaustive.

Nestjs est la version « Universal » de la bibliothéque Angular. Ce framework est créé par
Google. Nestjs est utilisé par de célébres sites tel que Adidas, Autodesk, Décathlon, ... La
liste n’est, la non plus, non exhaustive.

Toutes ces alternatives ont leurs avantages et leurs inconvénients. Mais le choix de Nuxt.js
futimposé par le maitre de stage. La question de quel framework utiliser ne s’est pas posée.

4 .Conclusion

En conclusion, lors de ce stage, j'ai di approfondir des concepts techniques déja vus lors
de ma formation, m’intéresser a d’autres concepts techniques non vus et les étudier afin de
les mettre en pratique. Enfin, apprendre a utiliser une nouvelle technologie, Nuxt.js, dont
les avantages sont indéniables.

L’objectif initial de ce stage a été atteint. C’est-a-dire, réaliser un POC (proof of concept)
sur base d’une application ayant pour vocation de montrer la faisabilité et I'efficacité de
cette nouvelle technologie.

Le serveur Node.js est effectivement intégré a Nuxt.js et est efficace dans le cadre de ce
projet.

Cette technologie a permis de récupérer le code d’origine d’une application sous Vue.js
réalisé au préalable par mes soins et de I'implémenter dans sa version finale sous Nuxt.js.

Ce stage m’a également permis de développer des compétences non techniques
importantes pour la gestion de tout projet. En effet, la situation sanitaire m’ayant obligé a
travailler a distance, il a fallu mettre en place une organisation rigoureuse pour garantir le
bon déroulement de cette expérience professionnelle particuliére.

De plus, de fréquentes interactions ont été nécessaires afin de s’assurer que le travail
réalisé corresponde aux attentes des personnes impliquées.

Au final, ce stage m’aura permis d’avoir un apercu des défis qui m’attendent a I'avenir.
Grace a ma formation technique, je suis confiant en mes capacités a y faire face.

EUROPEAN
oA e HELH

eeeee Haute Ecole Lousain en Hainaut

5.Médiagraphie

Abgrall, F. (s.d.). Demystifying SSR, CSR, universal and static rendering with animations.
Consulté en Mai 2021, sur Dev.to: https://dev.to/kefranabg/demystifying-ssr-csr-
universal-and-static-rendering-with-animations-m7d

Alves, R. (s.d.). What Is a Single Page Application (SPA)? Consulté en Mai 2021, sur
Outsystems: https://www.outsystems.com/blog/posts/single-page-
application/?utm_source=google&utm_medium=cpc&utm_campaign=Awareness_
G_GBL_Search&utm_term=single%20page%20application&utm_content=awaren
ess&gclid=CjwKCAjwnPOEBhAOEiwA609RecQ2Pe4WKeLshvbLJB6WcfQ6XSzTf
61uUeSh6ud7UvysigT07n7IAxoCjQUQAvVD_BwE

Barnard, J. (s.d.). Qu’est-ce que le SEQO ? Consulté le Mai 2021, sur SemRush Blog:
https://fr.semrush.com/blog/definition-seo-guide-2020-
debutants/?kw=&cmp=FR_SRCH_DSA_Blog_Core_BU_FR&label=dsa_pagefeed
&Network=g&Device=c&utm_content=486542000146&kwid=aud-
296306606820:dsa-

1100351999444 &cmpid=11849486850&agpid=113156852777&BU=Cor

FreeCodeCamp. (s.d.). Client-side vs. server-side rendering: why it’s not all black and white.
Consulté en Mai 2021, sur FreeCodeCamp:
https://www.freecodecamp.org/news/what-exactly-is-client-side-rendering-and-
hows-it-different-from-server-side-rendering-bd5¢786b340d/

httpbin.org. (s.d.). httpbin.org. Consulté le Mai 2021, sur httpbin.org: http://httpbin.org/
Malekal.com. (s.d.). QUEST-CE QUE JAVASCRIPT. Consulté en Mai 2021, sur
Malekal.com: https://www.malekal.com/javascript/

Mozilla. (s.d.). HTTP request methods . Consulté en Mai 2021, sur MDN WebDocs:
https://developer.mozilla.org/fr/docs/Web/HTTP/Methods

NodeSource. (s.d.). Choosing the right Node.js Framework: Next, Nuxt, Nest? Consulté en
Mai 2021, sur The NodeSource Blog: https://nodesource.com/blog/next-nuxt-nest/

Omoyeni, T. (s.d.). Differences Between Static Generated Sites And Server-Side Rendered
Apps. Consulté en Mai 2021, sur Smaching Magazine:
https://www.smashingmagazine.com/2020/07/differences-static-generated-sites-
server-side-rendered-apps/

Osmani, J. M. (s.d.). Rendering on the web. Consulté en Mai 2021, sur Developpers google:
https://developers.google.com/web/updates/2019/02/rendering-on-the-web

Parlement européen. (s.d.). Qu’est-ce que le Parlement européen? Consulté en Mai, 2021,
sur Le Parlement européen: https://www.europarl.europa.eu/news/fr/faq/16/qu-est-
ce-que-le-parlement-europeen

SEOQO.fr. (s.d.). Définition du SEO (Search Engine Optimisation). Consulté en Mai 2021, sur
SEO.FR: https://www.seo.fr/definition/seo-definition

EUROPEAN
oA e HELH

eeeee Haute Ecole Lousain en Hainaut

Toute I'Europe. (s.d.). Consulté en Mai 2021, sur Toute I'Europe:
https://www.touteleurope.eu/fileadmin/_processed_/3/2/Screenshot_2019-07-
02_Accueil_Resultats_des_elections_europeennes_2019_Parlement_europeen-
04856b33fd.png

Wikipédia. (s.d.). Ajax (informatique). Consulté en Mai 2021, sur Wikipédia:
https://fr.wikipedia.org/wiki/Ajax_(informatique)

Wikipédia. (s.d.). Conservateurs et réformistes européens. Consulté en Mai 2021, sur
Wikipédia: https://fr.wikipedia.org/wiki/Conservateurs_et_réformistes_européens

Wikipédia. (s.d.). Document Object Model. Consulté en Mai 2021, sur Wikipédia:
https://fr.wikipedia.org/wiki/Document_Object_Model

Wikipédia. (s.d.). Hypertext Transfer Protocol. Consulté en Mai 2021, sur Wikipédia:
https://fr.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Wikipédia. (s.d.). Institutions de I'Union européenne. Consulté en Mai 2021, sur Wikipédia:
https://fr.wikipedia.org/wiki/Institutions_de_1%27Union_européenne

Wikipédia. (s.d.). Nuxt.js. Consulté en Mai 2021, sur Wikipédia:
https://fr.wikipedia.org/wiki/Nuxt.js

Wikipédia. (s.d.). Optimisation pour les moteurs de recherche. Consulté en Mai 2021, sur
Wikipédia:
https://fr.wikipedia.org/wiki/Optimisation_pour_les_moteurs_de_recherche

EUROPEAN
oA e HELH

eeeee Haute Ecole Lousain en Hainaut

6.Lexique

A
B
Browser : Navigateur internet.
C
C.S.R : Rendu cété client
CSS : Langage de styles.
D
E

E.C.R : Groupe des Conservateurs et Réformistes européens
Eurozone : Les états membres qui ont adopté I'euro comme monnaie officielle

F

G

H
HTML : Langage de balises
HTTP : Hypertext Transfer Protocol

I
I.D : Groupe « Identité et Démocratie »

J
JSON : JavaScript Object Notation

K

L
La Gauche : Groupe de la Gauche au parlement européen

M

N

0]
O.D.S : Parti Démocratique Civique

P

P.E : Parlement européen
P.P.E : Groupe du Parti Populaire Européen
P.P.E-D.E : Parti Populaire Européen et des Démocrates Européens

Q

R
Renew : Renew Europe Group

S

S&D : Groupe de I'Alliance Progressiste des Socialistes et Démocrates au Parlement

européen
S.P.A : Application a page unique
S.S.R : Rendu cbté serveur

U.E : Union européenne

62

URL : Uniform Resource Locator

Vv
Verts/ALE : Groupe des Verts/Alliance Libre Européenne

W
X
Y

63

7.Annexes

Figure 6 : Exemple de requéte GET via Telnet

en Html

o
o
-
=}
Q
o
-
-
)
©

Satus code » 200 ok

Headers de la réponse

ntials:

de

=

-Cr

64

Figure 7 : Exemple de requéte HEAD via telnet

Headers de la réponse

X
o)
o
o
o~
<
©
o
o
»
-
]
-
)

@Mach

e
HTTF/1.1

b
ted

aln

LOonnel
HE&AD

65

Figure 8: Exemple de requéte POST via Telnet

Status Code »

4——————————— Header de la requéte
<4———— Header de la réponse

eT
44— Corps de la requéte

kProD

®
v
o
-
@
-
3
@
©
»
e
=
=]
&)

ngth":

-Le

66

Schéma Static Rendering

Figure 18

uesdp | g agydlye
159 a8ed 3ajjaAnou e

=
Cl LE D

9|qISIA 9100Ud
sed a)Is quawasieyd
ud no Jue|q uesdy

$221N0Sssal sap

921gnbai
| 9}1BJ} JNBAJDS 3

o8ed
2J1ne aun e Japadde
anod uojnoq un
ans anbijo unajesiin,]

-

$92JN0Ssal

ap apuewaq

ueny| g
29yd1yje 1so a8ed e

$82JN0ssal sap

3|qISIA 2100Ud
sed a)is quawasieyd
U no due|q ue.d3

@19nbau
| 91} JNBAJSS 3

t!

IN3AJIaS ne 31anbal
aun jey JnajesSineu a7

L — e]

gaM 3}s un uns
angiAeu Jnajesi|in un

A

$924n0ssal
ap apuewsaq

67

ring

Server Side Rende

Schéma

Figure 22

— anod uojnoq un
————DH_ [0 o o] nsonbipnaresian,
alulsls

3|qISIA 8400Ud
sed 9)is ‘quawadieyd
U3 no duejq uetdy

ueld3 | & aydle 21gnbas
159 a8ed ajj2Anou e | 9}IBJ} JN3AJDS 3 a8ed
aJ1ne aun e Japaaoe

I
e
|
$32.N0SsaJ S3P $924N0SS3
10AU3 ap apuewsaq
Buissasoud
SUOI}BW.IOJuUI,P S92JN0S
$92.N0SsaJ Sap 3
10AU3
— 559
$92JN0Ssa
ap wucmen_
—
</>
ANLH

e 99ydlyje 150 a8ed e

3|qISIA 2102U3
sed a)s ‘quawasieyd
ua Nno due|q ue.d3

uesd,| @19nbau
e| 9)1BJ] JNBAISS 9

gam 3yis un uns
ansiAeu Jnajesi|in un

aun je} anajesineu Ch |

———— — INaAJas ne 31@nbau
_HD 1) .
F[] y I
COEEE

7

$324N0SS3J Sap $924N0SSAU
10AU3 ap apuewsaqg
Suissasold
SUOIJBW.IO}UI,P S32INOS
$92JN0SSsaJ Sap -1
10AU3

— SSO

$924N0Ssal
ap mv:mEmo

<>

68

t Side Rendering 1

en

Schéma Cli

Figure 28

uedd,|
e 29yduyje 1sa aded e

[T
[[I5S

9|qISIA 3100Ud
sed a)Is quawasieyd
U No due|q ue.d3

anp snos
3p02d 3] IN29X3 Jnajesineu 3

slanp
A
ﬁ.-.v
SS9

3|qISIA 9400Ud
sed 93Is quawasieyd
U3 no due|q uesd3

1diIoSeART SIBIYILY

$9| 984ey23|91 Jnajesineu a7

LN e

9|qISIA 2100Ud
sed ays quawasdieyd
u? No due|q uesdy

<>
INLH

@1gnbau
e| 911eJ] JNBAISS 31

JN@AISS ne QH_@SUWL

! aun jiej Jnajesineu 3

gaMm 3)is un Jns
ansiAeu Jnajes|jian un

69

Client Side Rendering 2

Schéma

Figure 29

ueny | g agydlje
150 98ed 3||aAnou e

JIH
mluls ,.L_M_ _H_

3p02 3| 31NJ29X3 Jn3jesiAeu 3]

$22JN0ssal sap

10AU]

s998.eyd suonjewJsojul
sues ueJdg,|
B 99Ul e Inohen

=
] LEDD

o9NA Snos

sfanp

suoljewJojul, p s224n0S

$921Nn0ssal
ap apuewaq

o8ed
2J1ne aun e Japadde
Jnod uoinoq un
Jns anbid Jnajesinn,]

TR
e e Lm_ _H_

L eo0)

70

1

ring

| Rende

Schéma Universa

Figure 37

e 99yduyje 150 28ed e

J130BI93UI D100UD sed
slew 3|qISIA 353 3}s 31

IOl
C el LD D

IXNN snos

9p0d 3| 21NIPX3 Ina3jesiAeu

J130BJ33U] 3100UD sed
Sslew 3|qISIA 153 d}s 3

I
C el LD D

jduoseaer

sJa1ydly s3] a81eyda|9 19
a8ed e| aydiyje unajesineu a7

SFLXNN @

)

SSO

3|qISIA 2100U3
sed 9)is quawasieyd
U3 no due|q ue.d3

@1gnbau
©| 9}1BJ] JNBAJDS 3]

IN3AJ3S ne 3)gnbal
w:: u_ﬁ Jnajesineu a7
A|0

$§921N0Sssal sap $924N0Sssal

10AU3

ap apuewaq

SBuissasouid -

$921N0SSsal Sap
suoljew.ojul,p sa2inos 10AU3

$924N0SSaI
ap apuewaq

SS2

gam ayis un Jns
andiAeu Jnajesi|ian un

71

2

ring

| Rende

Schéma Universa

Figure 37

Jnajesijnn,| Jed
9|qISIA 159 12 anpual
159 28ed 3||aAnou e

=
£ & & ,Lm_ _H_

s998Jeyd suonewJojul
sues npuaJ JnoAe

5=
] LLED D

IXNN snhos

9pP0J 39| /andgXa .:,_wumm_>mc Cl

SFLXNN

$§92JN0ssal sap $92JN0SSaJ

10AU3

ap apuewsag

suoljewJuojul p s224nos

a8ed
2JIne aun e Japdoe
Jnod uoinoq un
Jns anbi|d anajesijin,]

IR
B8 LE _u

72

