
	

Remerciement	
Je tiens à les remercier pour leurs conseils et leur aide précieuses :

Mesdames :

• Bandinu	Louna		

• Desurpalis	Nicole	

• Lechien	Zazie	

Messieurs :

• Jadoul	Philippe	

• Ledru	Robinson	

• Michaux	Bertrand	

• Saldic	Dzafer	

• Smolders	Laurent	

• Wambe	Patrick	

Ainsi que :

• Le	groupe	politique	ECR	pour	m’avoir	donné	l’opportunité	d’effectuer	mon	stage	en	son	

sein.	

• L’ensemble	du	corps	enseignant	de	l’HELHa	de	Charleroi	m’ayant	suivi	de	près	ou	de	loin	

dans	mon	parcours.		

Abstract	

During my last year of Bachelor in informatics, I had the opportunity to participate to a 15-
weeks internship in a company.
This company is the ECR group, one of the many political groups of the European
Parliament.
The purpose of this internship was to develop an application to test the abilities of a new
technology known as Nuxt.js.

The goal was reached and I was able to develop a website dealing with public data of ECR
deputies.
In order to do this, I had to use known technical concepts learned in school, study unknown
concepts and apply them in the ‘real working environment’.

This final project will describe in detail all the steps needed to achieve a working application,
which will serve as a foundation for further developments.

Finally, those 15 weeks have proven me that this kind of development project was well
within my reach and that I was technically competent to deal with it.

I hope that reading this will be as interesting for you as it was for me writing it.

	

Table	des	matières	

1.Introduction	..	1	

2.Présentation	de	l’entreprise	..	2	
2.1.Le	Parlement	européen	..	2	
2.2.Le	groupe	ECR	...	4	

3.Présentation	du	stage	..	6	
3.1	Introduction	...	6	
3.2.Différents	concepts	techniques	abordés	lors	du	stage	6	

3.2.1.HTTP	...	6	

3.2.2.Single	Page	Application	..	14	

3.2.3.Document	Object	Model	...	15	

3.2.4.SEO	...	16	

3.2.5.Ajax	..	17	

3.3.Le	rendering	...	19	
3.3.1.Introduction	...	19	

3.3.2.Static	Rendering	...	19	

3.3.3.Server	Side	Rendering	..	22	

3.3.4.Client	Side	Rendering	...	25	

3.3.5.Universal	Rendering	...	29	

3.3.6.Static,	Server	Side,	Client	Side		ou	Universal	Rendering?	34	

3.4.Présentation	de	Nuxt.js	..	35	
3.5.TailwindCss	..	36	
3.6.Projet	de	stage	...	37	

3.6.1.Serveur	Node.js	/	Back-End	..	38	

3.6.2.Single	Page	Application	/	Front-End	..	40	

3.6.3.Affichage	des	cartes	...	41	

3.6.4.Page	«	détails	»	..	45	

3.6.5.Barre	de	navigation.	...	47	

3.6.6.Recherche	dans	les	cartes	..	47	

3.6.7.Pagination	..	49	

3.6.8.Passage	sous	Universal	Rendering	...	55	

3.6.9.Sessions	et	cookies	..	57	

3.6.10.Site	complet	...	58	

3.7.Alternatives	..	59	

4.Conclusion	...	59	

5.Médiagraphie	..	60	

6.Lexique	….	...	62	

7.Annexes	…	...	64	

Wambe Thomas 1

1.Introduction	

Lors de ma dernière année de Bachelier en informatique et systèmes à finalité industrielle,
j’ai eu l’occasion de réaliser un projet lors d’un stage en entreprise de 15 semaines. Cette
entreprise est le groupe ECR, l’un des groupes politique du parlement européen.

Lors de ce stage, il m’a été demandé de préparer le terrain afin de moderniser la mise en
place d’une infrastructure applicative pour la rendre disponible sous un navigateur web.
Cette mise en place s’est effectuée sous une nouvelle technologie de rendu universel,
Nuxt.js.

L’objectif final de cette application est de rendre disponible des données générales au sein
de l’entreprise afin que chaque membre puisse les consulter librement.

Pour ce faire, j’ai dû effectuer des recherches sur différents concepts techniques, tel que le
rendering ou le framework Nuxt.js, que j’expliquerai dans ce travail.
Ensuite, il a fallu mettre en place ces différents concepts afin de répondre aux objectifs de
ce projet.

Enfin, différents tests ont été nécessaires afin de valider le bon fonctionnement de
l’application dans les différents cas de figure possibles lors de son utilisation.

De nouvelles fonctionnalités seront mises en place à l’avenir. Celles-ci sont, de manière
non exhaustive, la localisation de l’emplacement des lieux de travail des députés (bureaux
alternativement à Strasbourg et à Bruxelles), le remboursement des différents frais liés aux
activités du personnel du groupe ECR, une gestion d’utilisateurs afin de permettre l’accès
à certaines informations, etc…

Ces développements futurs ne seront pas abordés dans ce travail, car ils font toujours
l’objet de négociations au sein du groupe.

Avant d’aborder le projet en lui-même, ce stage m’a permis de me familiariser avec le
monde de l’entreprise et la gestion d’un projet de développement en Informatique dans un
cadre professionnel.

La situation sanitaire actuelle n’a pas empêché de mener le projet à son terme, et ce grâce
aux nombreux échanges avec le maître de stage. La disponibilité et les compétences
techniques de ce dernier m’ont permis d’acquérir de nouvelles connaissances dans le cadre
de ma formation.

Je souhaite que la lecture de ce travail fasse apparaître tout l’enthousiasme que j’ai mis
pour le réaliser.

Wambe Thomas 2

2.Présentation	de	l’entreprise	
2.1.Le	Parlement	européen		

Le Parlement européen (PE) est l’une des sept institutions de
l’Union Européenne (UE). Ces institutions sont réparties en
différentes catégories : Les institutions politiques, les
institutions économiques et l’institution judiciaire.

Les institutions politiques sont composées du Parlement
européen, du Conseil européen, du Conseil des ministres et de la Commission européenne.
Les quatre institutions susnommées détiennent les pouvoirs exécutif et législatif de l’UE.

Les institutions économiques regroupent les institutions de la Banque centrale européenne
et de la Cour des comptes européenne. La première contrôle la politique monétaire de
l’ensemble des 19 états de l’Eurozone1 et ainsi, elle maintient la stabilité des prix sur
l’ensemble de ces états. La seconde s’assure de la bonne utilisation du budget de l’UE.

L’institution judiciaire est uniquement composée de la Cour de justice de l’UE. Cette
institution a pour but d’assurer que le droit communautaire est appliqué de la même façon
dans tous les états et d’arrêter les discordes entres les institutions et les États.

Le PE est composé de 705 députés élus dans les 27 pays membres de l’UE élargie. Ce
parlement est élu au suffrage universel direct pour une période de 5 ans.

1
	Eurozone	:	Les	états	membres	qui	ont	adoptés	l’euro	comme	monnaie	officielle.		

Figure 1 : Organisation au sein de l'U.E.

Wambe Thomas 3

Celui-ci décide également la législation de l'Union, y compris sur le budget pluriannuel, avec
le Conseil de l’Union européenne. Les autres institutions, dont la Commission européenne,
rendent des comptes au Parlement.

Le PE élit le président de la Commission européenne et joue un rôle clé dans l'examen des
Commissaires-désignés, en les auditionnant individuellement. Le collège des commissaires
- c'est à dire l'ensemble des vingt-sept commissaires réunis - doit ensuite recueillir le vote
de consentement du Parlement.

Les députés au Parlement européen sont élus dans les états membres de l'UE
et représentent environ 447 millions d’habitants. Au fil des années et des modifications
apportées aux traités européens, le Parlement a acquis des compétences législatives et
budgétaires considérables.

Le PE compte 7 groupes politiques répartis dans toute l’UE. Les députés ne peuvent
appartenir qu’à un seul groupe politique ; Il suffit de 23 députés pour former un groupe
politique qui doit comprendre des membres représentant au moins un quart des États
membres. Les députés au Parlement européen ne sont pas organisés par nationalité, mais
en fonction de leurs affinités politiques.

Ces groupes sont :
-Groupe du Parti Populaire Européen (PPE).
-Groupe de l’Alliance Progressiste des Socialistes et Démocrates au Parlement européen
(S&D).
-Renew Europe Group (Renew).
-Groupe des Verts/Alliance Libre Européenne (Verts/ALE).
-Groupe « Identité et Démocratie » (ID).
-Groupe des Conservateurs et Réformistes Européens (ECR).
-Groupe de la Gauche au Parlement européen (La Gauche).

En plus des 7 groupes politiques cités ci-dessus, on retrouve les non-inscrits, notés NI. Ces
députés politiques sont présents au Parlement européen mais ne font pas partie d’un
quelconque groupe politique.

Figure 2 : Sièges occupés par groupes politique au P.E.

Wambe Thomas 4

2.2.Le	groupe	ECR		

Le groupe Politique ECR, où le stage s’est déroulé, retiens donc ici
notre attention.

Le groupe des Conservateurs et Réformistes Européens (ECR ou
CRE en français) est un groupe politique européen qui regroupe
l’ensemble des partis de droite et de la droite nationaliste en Europe.
Les membres sont pour le « libéralisme économique ». Ils disposent
d’un groupe au Parlement européen mais également d’un groupe à
l’Assemblée parlementaire du Conseil de l’Europe.

Ce groupe fut fondé le 30 mai 2009 par le Parti conservateur britannique ayant quitté l’ex-
groupe du Parti populaire européen et des Démocrates européens (PPE-DE) devenus le
groupe du PPE. Néanmoins, la création du groupe fut officielle le 22 juin 2009 et est
annoncée à Londres et à Prague simultanément par les conservateurs et le Parti
démocratique civique (ODS). Ils comptaient 54 députés (26 conservateurs et unionistes
britanniques, 15 Polonais de Droit et Justice, 9 membres de l’ODS, un Belge, un Hongrois,
un Letton et un Néerlandais). Il est officialisé lors de la première représentation au
Parlement européen du 14 juillet 2009.

Composition du groupe ECR par pays lors de la 7ième législature (2009-2014).

Figure 3 : Composition du groupe ECR par pays (2009-2014)

À la présidence du groupe on retrouve Michał Kamiński, qui exerça ce rôle de juillet 2009
à mars 2011. Ensuite, Jan Zahradil assura la présidence jusqu’en décembre 2011 pour
céder sa place à Martin Callanan, en poste jusqu’à la fin de la législature : le 30 juin 2014.

À ce jour, le groupe est présidé par deux personnes co-présidentes qui sont : Ryszard
Legutko et Raffaele Fitto. Le groupe est constitué, pour la 9ème législature (2019-2024),
de 62 sièges à la chambre du PE.

Groupe	ECR	2009-2014

Belgique	:	1

Croatie	:	1

Danemark	:	1

Hongrie	:	1

Italie	:	1

Lituanie	:	1

Pays-Bas	:	1

Pologne	:	9

Tchéquie	:	9

Royaume-Uni	:	27

Wambe Thomas 5

En voici sa composition classifiée par pays :

Figure 4 : Composition du groupe ECR par pays (2019-2024)

 	

Groupe	ECR	2019-2024
Allemagne	:	1

Belgique	:	3

Bulgarie	:	2

Croatie	:	1

Espagne	:	4

Grèce	:	1

Italie	:	6

Lettonie	:	2

Lituanie	:	1

Pays-Bas	:	4

Pologne	:	27

Roumanie	:	1

Slovaquie	:	2

Suède	:	3

Tchéquie	:	4

Wambe Thomas 6

3.Présentation	du	stage	

3.1	Introduction	

Le groupe ECR met à la disposition de ses membres un site internet permettant de
connaître les activités de ceux-ci.

En parallèle, un système basé sur des documents papiers existe, pour tout ce qui concerne,
en autre, les remboursements et autres frais générés.

Le groupe souhaiterait disposer d’un outil informatisé permettant de rassembler ces
différents points dans une application qui pourrait évoluer, grâce à de nouvelles
fonctionnalités, dans le futur.

C’est là l’objectif principal de mon stage ; vérifier la faisabilité de cette demande, en tenant
compte des impositions du service informatique du groupe, à savoir, utiliser la technologie
Nuxt.js afin de jeter les bases d’une application pouvant servir de POC (proof of concept)
pour les différents développements à venir.

Pour cela, certains concepts techniques sont nécessaires.

3.2.Différents	concepts	techniques	abordés	lors	du	stage		

Lors de ce stage, plusieurs concepts techniques ont dû être utilisés ou simplement
mentionnés. On y retrouve le protocole HTTP, la Single Page Application, le SEO, le DOM
et l’Ajax expliqués ci-dessous.

3.2.1.HTTP		
1.	Introduction			

En 1989 Tim Berners-Lee, travaillant alors au CERN en suisse, a rédigé une proposition
visant à créer un système hypertexte sur internet. La mise en œuvre de ce système
hypertexte en 1990, appelé plus tard World Wide Web, est construit sur les protocoles TCP
et IP existants.

Il est fait de 4 composants :

• Un	format	textuel	pour	représenter	des	documents	hypertextes	:	le	HTML.	

• Un	 client	 pour	 afficher	 ces	 documents	 :	 le	 premier	 navigateur	 web	 (appelé	 aussi	

WorldWideWeb).	

• Un	serveur	pour	donner	accès	aux	documents	:	une	première	version	de	httpd.	

• Un	protocole	simple	pour	échanger	ces	documents	:	le	protocole	HTTP.	

Ce protocole est un protocole de communication client-serveur. Il utilise par défaut le port
80. Il existe une variante sécurisée, HTTPS qui utilise le port 443. Le protocole HTTP
permet la communication entre un client et un serveur, lors d’un accès sur un site internet
par exemple.

Wambe Thomas 7

Cet accès va se faire comme suit :

1) L’utilisateur va saisir, dans la barre d’adresse de son navigateur, l’URL du site
auquel il veut accéder : http://www.example.com. Après avoir résolu cette adresse
et obtenu d'un serveur DNS l'IP du serveur distant lui correspondant, la requête est
envoyée à celui-ci.

2) La requête HTTP est envoyée par le navigateur au serveur Web qui héberge le

contenu du site. Cette requête est notamment composée d’une méthode, de l’URL
et de la version de HTTP utilisée. Elle a pour but de demander au serveur s’il peut
envoyer le fichier HTML qui compose la page.

3) Le serveur reçoit la requête, la traite et prépare une réponse qu’il renvoie au

navigateur.

4) Le navigateur traite la réponse et affiche la page à l’écran.		

Figure 5 : Processus de communication du protocole HTTP

Comme dit aux points 1 et 2, le protocole HTTP est fait de requêtes. Celles-ci respecteront
la structure suivante :

2.	Structure	d’une	requête	
	 2.1.		«	Start	Line	»	
Elles commenceront par ce qu’on appelle une « Start Line » (ligne de départ). Cette « Start
Line » sera composée d’une méthode, d’une URL et d’une version.
	 	 2.1.1.	Méthode	
Ici la méthode décrit l’action à effectuer.
Ces méthodes sont nombreuses, mais les plus utilisées sont les méthodes GET, HEAD et
POST.

Wambe Thomas 8

	 	 2.1.2.	URL	
L’URL est la cible de la requête. Celle-ci peut être écrite de façons différentes.

• Un chemin absolu, également appelé « forme d’origine ». Cette forme d’URL est

utilisée avec les méthodes GET, POST, et HEAD. Celle-ci commencera par un « / »
et peut également n’être constituée que de ce caractère pour cibler la racine du site.
Quelques exemples :
 -GET /background.png HTTP/1.1
 -POST / HTTP/1.0
 -HEAD /test.html ?query=test HTTP/1.1

• Une URL complète, également appelé « forme absolue ». Celle-ci est principalement
utilisée avec la méthode GET.
Cette URL sera relative au serveur et sera formée de cette façon :
 -GET http://www.example.com. HTTP/1.1

• Une URL comprenant un composant d’autorité, composé d’un nom de domaine et
éventuellement du port, précédé du caractère « : ». Elle n’est utilisée que par la
méthode CONNECT lors de la configuration d’un tunnel HTTP (cette méthode ne sera
pas reprise dans ce travail) ... Elle se présente comme suit :
 -CONNECT example.com:80 HTTP/1.1

• Une URL redirigeant sur l’entièreté du serveur. Cette URL se compose uniquement
d’une astérisque « * » et est utilisée avec la méthode OPTIONS (cette méthode ne
sera pas reprise dans ce travail).
En voici un exemple :
 -OPTIONS * HTTP/1.1

	 	 2.1.3.	Version	
La version HTTP définit la structure du message. Elle agit comme un indicateur de la
version attendue à utiliser pour la réponse.

Ensuite, viennent les « Headers » (en-têtes) qui complètent la requête.
	 2.2.	«	Headers	»	
Les « Headers » HTTP d’une requête suivent tous la même structure. Une chaîne
insensible à la casse2 suivie d’un séparateur, deux points, « : » et d’une valeur dont la
structure dépend du type de « Header ». Cette structure n’est faite que sur une seule ligne
ce qui peut être, parfois, assez long.

 Un exemple de « Headers » : -Content-Length : 9000
 -Content-Type: text/html
 -Connection: keep-alive

Après les « Headers » vient le corps de la requête également appelé « Body ».

2
	Insensible	à	la	casse	:	L’action	sera	la	même	que	ce	soit	écrit	en	majuscules	ou	en	minuscule	

Wambe Thomas 9

 2.3.	«	Body	»	
C’est la dernière partie de la requête bien qu’elle puisse être optionnelle. Effectivement
toutes les méthodes n’ont pas besoin de corps. Celui-ci n’est utile que pour les requêtes
servant à envoyer des données au serveur afin de les mettre à jour.

3.	Structure	d’une	réponse	
Une fois la requête reçue, le serveur envoie une réponse au navigateur.
Cette réponse a, à l’instar de la requête, une structure.

	 3.1.	«	Status	Line	»	
Cette réponse commence par une « Status Line » (ligne d’état).
La « Status Line » contient les informations suivantes : la version d’HTTP, un « Status
Code » (code de statuts) et un texte d’état.

	 3.1.2.	Version	
La version d’HTTP est en relation directe avec la requête. Effectivement, si la requête
envoie une certaine version d’HTTP, la réponse aura la même version.

	 3.1.3.	«	Status	Code	»	
Le « Status Code » indique l’état de la réponse. Nous reviendrons plus en détails sur ces
codes de statut.

	 3.1.4.	«	Status	text	»	
Le texte d’état est une brève description textuelle purement informative du « Status Code »
pour qu’un humain puisse comprendre le message HTTP plus facilement.

Exemples de « Status Line »:
 -HTTP/1.1 404 NOT FOUND
 -HTTP/1.0 200 OK

	 3.2.	«	Headers	»	
Ensuite, comme pour la requête, on retrouve le « Header » de la réponse.
Cet en-tête a la même structure que celle de la requête ; c’est-à-dire une chaîne insensible
à la casse suivie d’un séparateur, deux points, « : » et d’une valeur. Ceci s’appelle une
paire de clé/valeur. Au même titre que l’en-tête de la requête, la structure de la valeur
dépend du type de « Header ». Celui-ci peut, encore une fois, être assez long car toujours
sur la même ligne.

	 3.3.	«	Body	»	
Comme dans une requête, le dernier élément de la réponse est son corps.
Toutes les réponses n’ont pas nécessairement un corps. Effectivement, les réponses, avec
un « Status Code » qui répond suffisamment à la demande sans avoir besoin de contenu
correspondant, n’en ont pas. Par exemple les « Status Code » 204 ne nécessitent pas de
corps de réponse.

Wambe Thomas 10

4.	Méthodes	plus	en	détails.	
	 4.1.	Méthode	GET	
La méthode GET est la méthode la plus courante pour récupérer une ressource statique
ou dynamique sur un serveur. Ces requêtes avec la méthode GET ne peuvent,
théoriquement, servir qu’à récupérer des données mais dans la pratique certains
développeurs pourraient l’utiliser pour envoyer des données au serveur pour aller, par
exemple, modifier ou écrire des informations dans une base de données.

La méthode GET peut posséder des « Headers » mais ne possède pas de corps dans la
requête.
Cependant, la réponse peut également posséder des « Headers » mais elle, au contraire
de la requête, possède généralement un corps de réponse.

 4.2.	Méthode	HEAD
La méthode HEAD est surtout utilisée lors de tests ou à des fins informatives. Cette
méthode permet, entre autres, à l’utilisateur de savoir si la page à afficher n’est pas trop
volumineuse avant de la télécharger entièrement. Si la page semble trop grande pour
l’utilisateur, il pourra éviter de faire une requête GET pour, par exemple, économiser de la
bande passante.

Cette méthode peut posséder des « Headers » mais ne possède pas de corps dans la
requête.

Figure 6 : Exemple de requête GET via Telnet

Wambe Thomas 11

Figure 7 : Exemple de requête HEAD via telnet

La réponse peut également posséder des « Headers » mais ne possède généralement pas
de corps. Si, malgré tout, corps il y a dans la réponse, celui-ci sera rogné et ignoré.

	 4.3.	Méthode	POST	
La méthode POST, a contrario des autres méthodes décrites, sert à envoyer des données
au serveur.

Cette méthode peut posséder des « Headers » et possède un corps dans la requête.
La réponse peut également posséder des « Headers » et possède généralement un corps.

 	

Figure 8: Exemple de requête POST via Telnet

Wambe Thomas 12

5.	Précisions	des	«	Status	Codes	»	
Les codes de statuts HTTP font partie des réponses fournies par les serveurs lors de
chaque requête effectuée sous n’importe quelle méthode.

Ces codes, composés de 3 chiffres, permettent au navigateur de savoir si la requête a bien
été formulée, si celle-ci a abouti, etc. Ces « Status Codes » sont divisés en plusieurs
classes selon le chiffre se situant en première position :

• La	classe	1XX	:	ce	sont	les	codes	d’information.	Ces	codes	commencent	par	le	chiffre	1,	ce	

qui	 indique	au	client	que	 la	 requête	est	en	train	d’être	effectuée.	Cette	classe	regroupe	

donc	tous	les	codes	des	requêtes	étant	en	cours	de	traitement	et	ou	d’envoi.		

• La	 classe	 2XX	 :	 ce	 sont	 les	 codes	 de	 succès.	 Ces	 codes	 commencent	 par	 le	 chiffre	 2	 et	

indiquent	l’aboutissement	de	la	requête.	Cette	requête	a	donc	été	reçue	par	le	serveur,	a	

été	comprise	et	acceptée.	Ces	codes	sont	envoyés	en	même	temps	que	les	informations	

des	pages	web	demandées.		

• La	classe	3XX	:	ce	sont	 les	codes	de	redirection.	Ces	codes	commencent	par	 le	chiffre	3.	

Ceux-ci	 stipulent	 au	 client	que	 le	 serveur	 a	bien	 reçu	 la	 requête	mais	 que	 le	 client	doit	

encore	 effectuer	 une	 action	 supplémentaire	 pour	 que	 le	 traitement	 soit	 conduit	 à	 sa	

résolution	finale.	Ces	codes	apparaissent	lors	de	cas	de	redirections.		

• La	classe	4XX	:	ce	sont	les	codes	d’erreur	du	client.	Ces	codes	commencent	par	le	chiffre	4	

et	renvoient	à	une	erreur	commise	par	le	client.	Ils	signifient	que	le	serveur	a	bien	reçu	la	

requête	mais	ne	peut	pas	 l’exécuter.	Dans	la	majorité	des	cas,	ces	codes	sont	dus	à	une	

erreur	de	syntaxe.	Les	développeurs	peuvent	avoir	mis	en	place	du	contenu,	à	afficher,	sur	

le	serveur	lorsque	ce	genre	de	code	est	répondu.		

• La	classe	5XX	:	ce	sont	les	codes	d’erreur	du	serveur.	Ces	codes	commencent	par	le	chiffre	

5.	Ils	font	référence	à	une	erreur	commise	par	le	serveur.	Ils	indiquent	que	la	requête	est	

complètement	 ou	 provisoirement	 impossible	 à	 effectuer.	 Une	 page	 HTML	 est	

généralement	affichée.		

Certains codes notables sont : 200, 304, 400, 403, 404, 500 et 503.

• Le	code	200	 :	généralement	suivi	de	«	Ok	»	 indique	au	client	que	 la	 requête	a	bien	été	

traitée	avec	succès.	 La	 réponse	dépendra,	bien	évidemment,	de	 la	méthode	de	 requête	

utilisée.		

• Le	code	304	:	ce	code,	suivit	de	«	Moved	Permanently	»,	 indique	que	la	ressource	a	été	

définitivement	déplacée	à	L’URL	contenue	dans	le	Headers.	

• Le	code	400	:	suivi	de	«	Bad	Request	»	est	une	réponse	à	une	requête	à	syntaxe	erronée.	

Ce	code	survient	fréquemment	lors	de	test	sur	un	serveur.	

• Le	code	403	:	suivi	de	«	Forbidden	»	indique	que	le	serveur	a	compris	la	requête	mais	refuse	

de	 l’exécuter.	 Ce	 code	 d’erreur	 est	 souvent	 retourné	 lorsque	 l’utilisateur	 ne	 peut	 pas	

accéder	à	la	ressource	demandée.	S’authentifier	ne	servira	à	rien	dans	ce	cas,	la	ressource	

ne	pourra	pas	être	accessible.		

Wambe Thomas 13

• Le	code	404	:	toujours	suivi	de	«	Not	Found	»	est	une	réponse	récurrente	qu’on	rencontre	

lorsque	 la	 ressource	 demandée	 n’est	 pas	 trouvée.	 Généralement,	 une	 page	 dédiée	 aux	

erreurs	404	est	située	sur	un	site	internet.	Cette	erreur	peut	être	facilement	générée	en	se	

trompant	ou	en	ajoutant	des	caractères	dans	une	URL.		

• Le	code	500	:	ce	code	est	retourné	en	réponse	à	une	requête	lorsqu’une	erreur	interne	au	

serveur	est	présente.	Si	le	serveur	ne	peut	traiter	la	requête,	ce	code	est	automatiquement	

affiché.	Généralement	seul	l’administrateur	du	site	pourra	régler	ce	problème.	

• Le	code	503	 :	ce	code	est	envoyé	en	réponse	à	une	requête	quand	 le	service	requis	est	

temporairement	 ou	 indéfiniment	 indisponible	 ou	 en	 maintenance.	 Cela	 peut	 aussi	 se	

produire	 lorsque	 le	 serveur	 est	 surchargé.	 L’utilisateur	 doit,	 en	 général,	 se	 dire	 qu’un	

administrateur	 travaille,	 au	 moment	 même,	 sur	 le	 problème	 et	 que	 le	 service	 sera	 de	

nouveau	disponible	sous	peu.		

Wambe Thomas 14

3.2.2.Single	Page	Application		

Une « single page application (SPA) » ou une application web mono-page est une
application web, comme son nom l’indique, accessible via une et une seule page web. Le
but est d’éviter le chargement d’une nouvelle page à chaque action demandée.

Figure 9 : rafraîchissement d’une Single Page Application.

Cela fluidifie ainsi l’expérience utilisateur. Pour ce faire, l’ensemble des éléments de
l’application est chargé en une fois. Lors de l’utilisation d’une SPA, le navigateur devient,
en quelques sorte, un ordinateur qui exécuterait localement un programme téléchargé sur
internet. Cette façon de faire des applications web apporte quelques avantages, tels que :

Ø La vitesse de chargement : le plus grand avantage du SPA est sa rapidité, car une
fois l’application chargée, la quantité de données transitant entre le client et le
serveur est très faible. Les temps de chargement en sont donc réduits au minimum.

Ø Le développement mieux organisé : lors du développement d'une application à page

unique, le code côté serveur est réutilisé et est effectivement découplé de l'interface
utilisateur frontale. Cela signifie que les équipes « Back-End » et « Front-End »
peuvent se concentrer sur leur travail respectif. Elles doivent néanmoins
communiquer entre elles pour s’assurer que les bonnes informations seront bien
envoyées et reçues.

Par contre, cette façon de coder des applications web a un défaut majeur : la mauvaise
gestion du SEO (expliqué ultérieurement).

Wambe Thomas 15

3.2.3.Document	Object	Model	

Le Document Object Model ou le DOM est la représentation objet des données qui
composent la structure et le contenu d’une page web. Le DOM est une représentation du
fichier HTML source. Il le transforme, en quelque sorte, en un modèle utilisable par d’autres
programmes. Ce modèle utilisable a une structure spécifique, appelée « Node Tree »
(arborescence en nœud). Sa représentation se fait en forme d’arbre où à chaque nœud du
document HTML, une nouvelle ramification se crée. Le premier élément est la balise
« <html> », ce qu’on pourrait associer à la racine de l’arbre. Chaque élément ou balise se
situant dans ce document fera partie des branches de cet arbre.

Par exemple, pour le code suivant :

Figure 10 : Exemple de code HTML simple

On obtiendra ce genre de DOM :

Figure 11 : Exemple de ce que peut donner un DOM

Le DOM définit également la façon dont la structure du document HTML peut être modifiée
par les programmes ou scripts, en terme de style et de contenu.

Le JavaScript s’exécute en partie sur le DOM pour en modifier son style et son contenu
pour afficher les différents éléments voulus à l’écran.

Wambe Thomas 16

Pour généraliser, le DOM relie les pages HTML aux scripts ou langages de programmation.
Le DOM est donc ce que le navigateur utilise pour afficher la page à l’écran. Le DOM sert
ainsi de liant entre le HTML et les scripts pour ne faire plus qu’un seul fichier à afficher.

3.2.4.SEO		

Le Search Engine Optimization (SEO), ou optimisation pour les moteurs de recherche, est
l’ensemble des techniques visant à améliorer le positionnement d’une page, d’un site ou
d’une application web dans la page des résultats d’un moteur de recherche. Ce
positionnement est considéré comme bon lorsque le site est classé dans la première page
des résultats de recherches faites grâce à des mots clés correspondant à sa thématique.

Le SEO, contrairement au SEA (Search Engine Advertising), est gratuit et est basé sur la
bonne optimisation du site. Cette optimisation peut être technique, grâce à l’indentation, au
contenu, à sa forme (meta tags) ou stratégique, basé sur les clients et leurs besoins.

Figure 12 : Critères de classement SEO.

Wambe Thomas 17

« Le SEO est l’art et la technique de persuader les moteurs de recherche comme Google,
Bing, et Yahoo, de recommander votre contenu à leurs utilisateurs comme la meilleure
solution à leur problème. »3

La plupart du temps, les développeurs se concentrent sur le référencement sur le moteur
de recherche Google. En effet ce moteur de recherche est, de loin, le plus utilisé en Europe.

Figure 13: Parts des marchés des moteurs de recherche en Europe.

3.2.5.Ajax	

L’Asynchronous JavaScript and XML (Javascript et XML asynchrones), dit Ajax, est une
méthode utilisant différentes technologies des navigateurs web qui permet d’effectuer des
requêtes aux serveurs web depuis le code JavaScript. Cette méthode permet de mettre en
place des applications web et des sites web dynamiques interactifs. XML présent dans
l’acronyme d’Ajax était historiquement le format utilisé pour échanger des données entre le
navigateur et le serveur web. De nos jours le JSON (JavaScript Object Notation) lui est, le
plus souvent, préféré dû à sa facilité d'interprétation par le moteur JavaScript.

La méthode classique de communication entre un serveur et un navigateur d’une
application web standard se fait comme suit :
Lors de chaque action effectuée par l’utilisateur, le browser (Navigateur internet) envoie au
serveur une requête HTTP, vue précédemment, contenant un lien vers une page web.
Le serveur va alors effectuer des « calculs » et envoyer le résultat, au navigateur, sous
forme d’une page web.

Une fois reçue, celui-ci l’affichera.

3
	Source	:	https://fr.semrush.com/blog/definition-seo-guide-2020-

debutants/?kw=&cmp=FR_SRCH_DSA_Blog_Core_BU_FR&label=dsa_pagefeed&Network=g&Devi

ce=c&utm_content=486542000146&kwid=aud-296306606820:dsa-

1100351999444&cmpid=11849486850&agpid=113156852777&BU=Cor	

Parts	des	marché	des	moteurs	de	recherche	
en	Europe

Google	:	93,62%

Bing	:	2,42%

YANDEX	RU	:	1,84%

YAHOO	:	0,96%

Autres	:		0,76%

Wambe Thomas 18

Chaque manipulation faite par l’utilisateur entraînera cette séquence d’actions.
Ce qui engendre une perte de temps lors des rafraîchissements intempestifs à chaque
action, contrairement à l’Ajax qui modifie la façon dont ce dialogue se déroule.

En effet, lorsque l’utilisateur fait une action, un programme écrit en JavaScript, présent sur
la page web, est exécuté par le navigateur. Ce programme envoie, en arrière-plan, les
requêtes au serveur web, puis modifie le contenu de la page actuellement affichée par le
browser en fonction du résultat reçu du serveur. Ce procédé évite la transmission et
l’affichage, c’est-à-dire, le rafraîchissement de la page au complet.

Cette méthode nécessite de programmer, en JavaScript, les échanges entre le navigateur
web et le serveur web. Il est nécessaire, également, de programmer les modifications à
effectuer dans la page web lorsque les réponses sont reçues.

Ces dialogues sont, comme le nom Ajax l’indique, fait de manière asynchrone. Cela veut
dire que le navigateur continue d’exécuter le programme JavaScript lorsque la requête est
effectuée. Celui-ci n’attend donc pas la réponse du serveur et l’utilisateur peut ainsi
continuer à effectuer des manipulations pendant ce temps. Une fois la réponse reçue, celle-
ci sera traitée par le gestionnaire d'événement défini lors de l'appel à cette fonction.

 	

Wambe Thomas 19

3.3.Le	rendering		

3.3.1.Introduction	

Dans le monde du développement web, on différencie 2 types de rendering.

Le premier fait référence au « Rendering Engine », que l’on peut traduire en français par
« Moteur de rendu » du navigateur.
Le moteur de rendu est, en quelque sorte, le noyau d’un navigateur internet, par analogie
avec le moteur des véhicules.

Effectivement, le moteur de rendu a une fonction très importante : il permet d’afficher ce
qu’on voit à l’écran. Il communique avec la couche réseau du navigateur pour récupérer le
code HTML et d’autres éléments transmis, tels que des fichiers JavaScript depuis un
serveur web distant.

Une fois que tous ces éléments sont présents dans le moteur de rendu, il analyse les
fichiers HTML et crée le DOM grâce à ceux-ci et aux fichiers JavaScript reçus. Il construit
ensuite, à l’aide des attributs CSS et du DOM, l’arborescence de rendu. Ensuite, il
commence le processus de mise en page en parcourant de manière récursive les éléments
HTML de l’arborescence et détermine où ceux-ci doivent être placés. Pour finir, il affiche
chaque branche de l’arborescence de rendu à l’écran, en communiquant avec l’interface
du système d’exploitation qui, contient des conceptions et des styles indiquant à quoi
doivent ressembler les éléments de l’interface utilisateur.

Le second, celui qui nous intéresse ici, est celui qui « génère » le fichier HTML. Ce fichier
est ensuite utilisé par le navigateur afin de faire le premier type de rendering expliqué ci-
dessus. Ce deuxième rendering se décline de différentes façons, à savoir : le Static
rendering, le Server Side rendering, le Client Side rendering et l’Universal rendering.

3.3.2.Static	Rendering		

Les technologies du développement web ont beaucoup changé au fil des années.
Avec les débuts d’internet, seule une ou plusieurs pages statiques étaient nécessaires pour
créer un site web. Ces pages contenaient souvent du texte ou des images et étaient bien
souvent codées sous HTML et CSS. Ces sites utilisaient la méthode la plus conventionnelle
de l’époque qui était le Static Rendering (rendu statique).

Cette méthode ne permettait pas de faire de site dynamique. Aucun appel à une ou
plusieurs sources d’informations (une base de données, une API4, un service web, …)
n’étant fait, seuls les éléments affichés sur la page étaient disponibles.

Cette méthode est la plus sûre, son rendu est le plus rapide, son déploiement est le moins
complexe à mettre en place et, de plus, elle ne demande que quelques Ko de stockage.
Cependant, comme elle ne permet aucun rendu dynamique et que sa maintenance n’est
pas chose aisée, elle n’est plus aussi utilisée qu’avant.

4
	API	:	Application	Programming	Interface	ou	interface	de	programmation	d’application.	Source	de	

données	accessible.		

Wambe Thomas 20

Effectivement, si, sur un site de vente fait en Static Rendering, nous étions amenés à
ajouter plusieurs produits différents, nous devrions créer chaque page une à une. De la
même façon, si nous souhaitions modifier les caractéristiques d’un produit, nous devrions
le faire sur chaque page où ce produit apparait. Comme dit plus haut, aucune requête à
une quelconque source d’informations n’est effectuée dans ce cas.

Son fonctionnement se fait comme ceci :

1) Lors de l’accès au site web, ici fruits.com, une requête est envoyée au serveur pour
pouvoir afficher le site web.

2) Le serveur envoie une requête à la source de fichiers statiques qui contiennent les

pages déjà traitées et rendues.

Figure 14: SR image 1

3) La source de fichiers renvoie au serveur la ou les ressources demandées.

4) Le serveur envoie au navigateur la ressource reçue par la source de fichiers
statiques.

5) Affichage de la ressource sur le navigateur.

 Figure 15 : SR image 2

Wambe Thomas 21

6) Lors du clic sur l’un des boutons du site, ici banane, une nouvelle requête est
envoyée au serveur afin de recevoir la ressource appropriée.

7) Le serveur envoie ensuite une requête à la source de fichiers pour qu’il puisse

retourner la ressource demandée.

Figure 16 : SR image 3

8) La source de fichiers statiques envoie les ressources demandées au serveur.

9) Le serveur envoie les ressources reçues au navigateur, qui les affiche à l’écran.

Figure 17 : SR image 4

Wambe Thomas 22

Si nous devions résumer cette méthode de Rendering en une image :

Figure 18 : Schéma Static Rendering

	
	3.3.3.Server	Side	Rendering		

Pour pallier le problème de rendu dynamique et de maintenance, la méthode du SSR a été
inventée.
Cette méthode consiste à charger tout le rendu graphique, les traitements et les appels à
la source d’informations au niveau du serveur puis de les renvoyer, une fois chargés, au
browser.
Ceci permet à l’usager de ne pas devoir posséder un ordinateur puissant pour afficher une
page internet. A l’époque, les ordinateurs à usage personnel vendus dans le commerce
n’étant pas vraiment puissants, cette méthode était relativement efficace.

Elle fonctionne comme suit :

1) Lors de l’accès au site web, ici fruits.com, une requête est envoyée au serveur pour
pouvoir afficher le site web.

2) Le serveur envoie une requête à la source avec les données demandées, ici la page
« fruits.com ».

3) La source d’informations lui répond en lui donnant les données demandées, ici les
sortes de fruits.

4) Le serveur traite les différents fichiers html et scripts.

Wambe Thomas 23

5) Une fois les traitements de rendu effectués, le serveur envoie l’affichage de la page
d’accueil sur le navigateur de l’utilisateur.

6) Lors du clic sur l’un des boutons de la page, ici le bouton « banane », une nouvelle
requête au serveur est effectuée pour y accéder.

7) Le serveur envoie une requête à la source d’informations en demandant des infos sur la
page en question, ici la page banane.

8) La source d’informations répond au serveur et lui envoie les données qu’elle possède à
ce sujet.

9) Le serveur traite le rendu graphique de la page.

10) Une fois le rendu graphique traité, le code html, avec les données de la source
d’informations, est envoyé au navigateur web.

Figure 19 : SSR image 1

Figure 20 : SSR image 2	

Wambe Thomas 24

Cependant, les requêtes faites par le navigateur au serveur, qui contiennent les données
du site internet, peuvent prendre un certain délai. Théoriquement, ce délai n’est censé être
que de quelques millisecondes, mais dans la pratique, cela varie énormément à cause des
conditions du réseau dans lequel on se trouve, de la rapidité de sa connexion, de la
localisation du serveur, du nombre de requêtes simultanées faites sur ce serveur, de
l’optimisation du site internet, etc.
Tous ces facteurs peuvent allonger ce délai de quelques millisecondes à quelques
secondes, voire même, dans les cas les plus extrêmes, plusieurs minutes. Ce qui peut être
dérangeant pour un simple affichage de site internet.

Si nous devions résumer cette méthode de Rendering en une image :

Figure 22 : Schéma Server Side Rendering

Figure 21: SSR image 3

Wambe Thomas 25

3.3.4.Client	Side	Rendering	

Pour pallier les éventuelles latences dues aux sites toujours plus volumineux, on préfère
l’utilisation d’un Client Side Rendering (rendu côté client ou CSR). Effectivement, cette
méthode demande à l’usager de faire certains traitements et rendus graphiques grâce à
son navigateur.
Cette dernière est codée majoritairement en HTML, comme pour le SSR, mais avec des
parties de JavaScript incrustées au code. Ces parties permettent également de rendre les
sites internet beaucoup plus dynamiques. Cette méthode demande plus de puissance au
niveau de l’ordinateur de l’usager mais offre des possibilités que la méthode du SSR ne
peut pas proposer.

Elle fonctionne comme suit :

1) Lors de l’accès au site web, ici fruits.com, une requête est envoyée au serveur pour
pouvoir afficher le site web.

2) Le serveur répond directement au navigateur et lui envoie la page html non compilée
qui contient essentiellement des scripts et des balises de style. Sans contenu, la
première chose que l’utilisateur voit, est une page blanche.

3) Le navigateur fait une ou plusieurs requêtes pour que le serveur exporte ensuite les
paquets JavaScript.

4) Le serveur envoie les paquets JavaScript au navigateur, si ceux-ci ne sont pas encore
téléchargés côté client. 	

5) Une fois les paquets récupérés, le navigateur compile les paquets et en ressort un

« layout » (plan du site) HTML sur le navigateur. Celui-ci sera certainement un plan
commun à toutes les pages ; la page n’a donc pas toutes les informations et devra
donc demander l’export des données à la source d’informations.

Figure 23 : CSR image 1

Wambe Thomas 26

	

	

6) Le navigateur demande donc à la source d’informations de lui envoyer les données

relatives à la page fruits.com pour étoffer la page d’accueil.

7) La source d’informations envoie les données pour que le navigateur puisse afficher
correctement le contenu de la page.

8) Une fois ces données reçues, le contenu dynamique est affiché à l’écran.

9) Lors du clic sur un élément pour naviguer sur une autre page, ici la page banane par
exemple, le layout sera directement affiché à l’écran mais une demande d’export des
données relatives à la page banane est faite à la source d’informations.

Figure 24 : CSR image 2

Figure 25 : CSR image 3	

Wambe Thomas 27

10) La	source	d’informations	répond	au	navigateur	en	lui	envoyant	les	données	relatives	à	la	page	

souhaitée,	ici	la	page	banane.		

11) Une fois ces données reçues, le contenu dynamique est affiché à l’écran.

Figure 27 : CSR image 5

Cependant, cette méthode a quelques défauts :
Vu que le rendu se fait du côté client, le navigateur est soumis à une plus grande
contribution que dans le cas d’un rendu côté serveur. Cela peut engendrer certaines gênes
si le site est souvent utilisé sur mobile (comme une utilisation excessive de la batterie par
exemple).

Le défaut majeur du Client Side Rendering est son inefficacité en termes de SEO.
Effectivement, les robots des moteurs de recherche, qui s’occupent d’indexer les sites, ne
sont que peu ou pas capables d’exécuter du code JavaScript. Donc, si tout le rendu est fait
en JavaScript, ces robots ne « voient » aucun contenu à indexer. Ceci rend le
référencement SEO impossible ou presque.

Figure 26 : CSR image 4

Wambe Thomas 28

Depuis quelques années, Google a développé un robot appelé « Googlebot » qui peut
exécuter quelques lignes de JavaScript pour aider à ce référencement. Mais il ne faut pas
que le code JavaScript soit trop conséquent, auquel cas, il n’arrivera pas à référencer ce
site.

Si nous devions résumer cette méthode de Rendering en deux images :

Figure 28 : Schéma Client Side Rendering 1

Figure 29 : Schéma Client Side Rendering 2

Wambe Thomas 29

3.3.5.Universal	Rendering	

Depuis quelques temps une nouvelle méthode de rendu a fait son apparition dans le monde
du développement web. Celle-ci est appelée Universal Rendering. Elle combine les
avantages des deux méthodes que sont le SSR et le CSR. Elle permet d’avoir un affichage
même si les données de la page ne sont pas encore envoyées depuis la source
d’informations. Cette page ne doit pas totalement être rechargée lors de la navigation.
Cette méthode commence, comme le rendu côté serveur, tout en ayant la finalité d’un rendu
côté client. C’est-à-dire que les fichiers JavaScript sont téléchargés en local sur le client.

Elle fonctionne comme suit :

1) Lors de l’accès au site web, ici fruits.com, une requête est envoyée au serveur pour
pouvoir afficher le site web.

2) Le serveur envoie une requête à la source d’informations avec les données
demandées, ici la page « fruits.com ».

3) La source d’informations lui répond en lui donnant les données demandées, ici les
sortes de fruits.

4) Le serveur traite les différents fichiers HTML et scripts.

5) Une fois les traitements de rendu effectués, le serveur envoie la page d’accueil sur le
navigateur de l’utilisateur.

Figure 30 : UR image 1

Wambe Thomas 30

6) Même si l’affichage ici est complet, le site n’est pas encore interactif et donc

l’utilisateur ne pourra appuyer sur aucun bouton pour afficher une autre page.

7) Il faut que le navigateur reçoive les fichiers JavaScript pour que le site soit totalement
fonctionnel.

8) Une fois les fichiers JavaScript reçus, une période de traitement commence. Cette

période consiste à synchroniser l’état de l’interface utilisateur de l’application avec
l’état initial reçu du serveur (synchronisation du JavaScript avec le HTML reçu
auparavant).

Figure 31 : UR image 2

Figure 32 : UR image 3

Wambe Thomas 31

9) Une fois cette période de synchronisation effectuée, la page devient totalement
interactive et donc l’utilisateur pourra être redirigé vers les pages lors d’un clic sur un
bouton.

Figure 34 : UR image 5

10) Lors du clic sur un élément pour naviguer sur une autre page, ici la page banane, le

layout sera directement affiché à l’écran. Une demande d’export des données
relatives à cette page sera faite à la source d’informations.

Figure 33 : UR image 4

Wambe Thomas 32

11) La source d’informations répond au navigateur en lui envoyant les données relatives
à la page souhaitée, ici la page banane.

12) Une fois les informations reçues, le contenu dynamique est affiché à l’écran.

Figure 36 : UR image 7

Figure 35 : UR image 6

Wambe Thomas 33

Si nous devions résumer cette méthode de Rendering en deux images :

Figure 37 : Schéma Universal Rendering 1

Figure 38 : Schéma Universal Rendering 2

Wambe Thomas 34

3.3.6.Static,	Server	Side,	Client	Side		ou	Universal	Rendering?		

Suite à toutes ces explications, une comparaison s’impose :

Il y a quelques points importants lors de la création de site internet qui peuvent entrer en
compte lors du choix de sa méthode de rendu.

Il convient donc de se baser sur ces points pour avoir une comparaison.

 Static

Rendering
Server Side
Rendering

Client Side
Rendering

Universal
Rendering

Dynamique ❌❌ ✅✅ ✅✅ ✅✅

Rapidité de
rendu à la

première requête
✅✅ ✅ ❌ ✅

Rapidité de
rendu de la page
après la première

requête

✅ ❌ ✅✅ ✅✅

SEO ✅✅ ✅✅ ❌❌ ✅✅

Flexibilité ❌❌ ✅✅ ✅✅ ✅✅

Rafraîchissement Toute	la	page Toute	la	page
Uniquement	les	

éléments	à	

changer

Uniquement	les	

éléments	à	

changer

Intelligence

Pas	

d’intelligence.	

Le	serveur	

renvoie	un	

fichier	statique.	

Le	navigateur	

l’interprète.		

Sur	le	serveur	

web.	Le	«	code	»	

s’exécute	sur	le	

serveur	

majoritairement.	

Sur	le	client.	Le	

serveur	web	ne	

donne	que	des	

fichiers	

statiques.	Un	

serveur	

d’application	

fournit	les	

données.		

Sur	le	client	et	

au	build	pour	

générer	les	

fichiers	

statiques.	Pas	

d’intelligence	

sur	le	serveur.	

Un	serveur	

d’application	

fournit	les	

données.		

Figure 39 : Tableau récapitulatif Rendering

Légende : ❌❌=Médiocre,	❌=Mauvais,	✅=	Bon,	✅✅=	Excellent	

	

Wambe Thomas 35

3.4.Présentation	de	Nuxt.js		

Nuxt.js est un framework5 open source6 gratuit basé sur Vue.js (framework de JavaScript)
et de Node.js. Ce framework a été créé afin qu’on puisse concevoir des applications web
dites Universelles. Avec Nuxt.js il est possible d’élaborer des applications web dites « Single
Page Application » en CSR mais également de produire des applications sur base
du Universal Rendering. Ce framework a l’avantage d’offrir la possibilité de mettre en place
un très bon SEO. Nuxt.js permet de créer son application web très facilement, car celui-ci
rend également possible l’intégration de modules et de librairies, ce qui permet aux
développeurs de gagner énormément de temps.

De plus, le « Routing » est autogéré. C’est-à-dire que la navigation entre les pages est déjà
prévue. Au contraire de Vue.js par exemple, dans lequel un fichier de routage est
nécessaire grâce à vue-router. Sur Nuxt.js, toutes les pages dans le même dossier parent
peuvent être accessibles en mentionnant une balise « NuxtLink » et le lien de la page.

Ici on retrouve la balise ouvrante et fermante
« NuxtLink » qui permet de stipuler qu’un clic
sur le champ « Log out » redirigera vers
l’adresse « / » qui est la racine de
l’application web.
Le champ « class » ici présent ajoute
simplement des éléments de style pour
rendre ce champ « Log out » plus agréable
visuellement.

 Ces redirections peuvent également se faire en passant des paramètres. En voici un
exemple concret :

Figure 41 : Exemple NuxtLink avec paramètres

Ici on retrouve la balise ouvrante et fermante « NuxtLink » qui permet de stipuler qu’un clic
sur le champ « HOME » redirigera vers le lien portant le nom « HomePage » avec le
paramètre « offset » qui sera égal à 0.
Le champ « class » ici présent ajoute simplement des éléments de style pour rendre ce
champ « HOME » plus agréable visuellement.

5
	Un	framework	est	une	infrastructure	de	développement.	

6
	 Open	 source	 :	 Logiciels	 dont	 le	 code	 est	 public.	 Ces	 projets	 sont	 généralement	 le	 fruit	 d’une	

collaboration	entre	programmeurs.		

Figure 40 : Exemple NuxtLink Simple

Wambe Thomas 36

Grâce à ces balises « NuxtLink » la page est déjà « prefetch » c’est-à-dire que le JavaScript
est déjà traité ; la page est déjà prête avant même que le clic sur l’élément balisé soit fait.
Cela est dû au système de « Smart Prefetching ». Ce système fait en sorte de charger les
pages à lien visibles et de préparer la page afin de l’afficher plus rapidement si l’utilisateur
clique sur le lien. Ce processus ne s’effectue que lorsque le navigateur n’est pas occupé. Il
n’a pas lieu lorsque l’utilisateur est hors ligne ou a une connexion internet plus faible
(connexion 2G).
Nuxt.js est également très léger. Avec sa configuration minimale en version Universal
Rendering il ne dépasse pas les 100Mo.

Comme une application sous Nuxt.js peut être développée en vue d’être en Universal
Rendering, il est possible d’ajouter un « Layout » commun à toutes les pages. Ce qui permet
par exemple d’ajouter un en-tête et un pied de page identiques à toutes les pages.
Néanmoins il est possible de ne pas activer cette fonctionnalité sur certaines pages.

Nuxt.js offre la possibilité d’avoir et d’utiliser des composants. Un bout de code répétitif peut
être exporté dans un composant afin de ne pas devoir réécrire ce code à chaque besoin.
Cela permet une meilleure lecture du code et évite la redondance (principe DRY : Don't
Repeat Yourself). Dans Nuxt.js les composants sont dits « Globaux » et donc peuvent être
utilisés partout dans le projet, que ce soit dans les pages ou dans les « Layout ».

3.5.TailwindCss		

Lors du projet de stage, il m’a été demandé d’ajouter tailwindcss pour une gestion plus
facile de l’habillage du site grâce à CSS.
Tailwindcss est un framework CSS permettant une meilleure gestion du CSS ainsi qu’une
facilité de développement. Ce framework a été développé en 2017 par Adam Wathan et est
encore aujourd’hui développé par son équipe et lui-même.

Ce framework est basé sur les principes de classes utilitaires, qui sont des classes à un
seul et unique but. Il ne reprend pas le principe des classes sémantiques qui demandent
d’inventer des noms de classes pour chaque élément d’interface que l’on voudrait ajouter.

Toutefois, il est toujours possible de créer ses propres classes sémantiques pour pouvoir
identifier un élément plus rapidement, par exemple.

Tailwindcss a également la particularité d’être intégré au fichier HTML. Il n’est donc pas
nécessaire de faire un second fichier dans lequel le CSS se trouvera.

Comme chaque classe a sa fonction bien précise, il nous en faudra plus pour pouvoir
effectuer la même action que sur d’autres framework tel que Bootstrap par exemple. Si l’on
souhaite afficher un bouton bleu sur Bootstrap, deux classes suffisent :

Figure 42 : Taille minimale Universal Rendering

Wambe Thomas 37

Figure 43 : Exemple bouton sous Bootstrap

Tandis qu’avec tailwindcss, pour afficher le même bouton, il en faudra 6 :

Ceci peut paraître perturbant au premier abord lors du développement mais cela permet
une grande personnalisation des éléments à afficher. Ces classes sont nombreuses et
fournies. Que ce soit pour de la typographie avec la classe « font-size » ou « font-color »
ou même des effets avec la classe « shadow », il en existe suffisamment pour personnaliser
à souhait.
Toutes ces classes sont directement présentes dans le code HTML ce qui donne la
possibilité de ne pas devoir changer de fichier ou de quitter son code pour devoir changer
un simple élément comme une taille de police par exemple. L'emploi intensif de composants
est cependant à recommander pour assurer la maintenabilité.

Tailwindcss permet d’ajouter le fait qu’un élément visuel soit dit « Responsive ».
Effectivement avec l’arrivée massive des mobiles dans le marché du web, il est nécessaire,
voire obligatoire, d’avoir son application utilisable sur un plus petit écran.
Ce que permet tailwindcss de faire est d’ajouter des classes « lg », « md », « sm » et bien
d’autres pour pouvoir afficher la classe adéquate selon la taille de l’écran.

Ce framework a la chance d’avoir une très grande communauté qui met en ligne de
nombreux et différents composants disponibles sur le site de tailwindcss même :
https://tailwindcomponents.com/

Sur ce site, on retrouve une documentation qui détaille toutes les classes disponibles avec
tailwindcss notamment, des exemples d’utilisation avec le code associé, ce qui facilite le
travail de recherche du développeur.

Ces différents concepts techniques étant désormais connus, nous pouvons entrer dans le
vif du sujet.

3.6.Projet	de	stage	

Lors de ce stage en entreprise, l'objectif qui m'a été donné était de préparer la migration
d’une Single Page application codé sous React.js, à une application en Universal Rendering
sous Nuxt.js.

Figure 44: Exemple bouton sous Tailwindcss

Wambe Thomas 38

Le passage de React.js à Vue.js, pour pouvoir l’installer sur Nuxt.js, n’étant pas ce qui a
été demandé, nous ne nous attarderons pas sur cette partie.

Pour prendre en main le framework Nuxt.js, il m’a été demandé de développer une
application en « Single Page Application » pour me familiariser avec le code Nuxt.js.

Cette application consiste à afficher des fiches de présentation des députés politique du
groupe ECR. Ces données sont disponibles dans une base de données. Cette application
étant en SPA, il a été nécessaire de passer par un serveur Node.js pour aller récupérer ces
données.

3.6.1.Serveur	Node.js	/	Back-End	

En premier lieu, nous avons dû faire le lien entre le serveur Node.js et la base données
PostgreSQL. Pour ce faire nous avons dû importer les librairies compatibles avec la base
de données et créer une connexion entre cette dernière et le serveur node.js. Pour des
questions de facilité de relecture du code, nous avons préféré exporter le fichier de
configuration de la connexion sur un autre fichier. La connexion se fait comme suit :

Un appel au fichier de configuration de la base de données.

Figure 45 : Connexion au fichier db.config

Ensuite la configuration de la connexion se fait et un export de cette connexion est envoyé
au code l’ayant appelé.

Figure 46 : Configuration de la base de données

Wambe Thomas 39

Une fois la connexion effectuée, il a fallu exporter les informations nécessaires au bon
fonctionnement du code. Comme nous n’avons pas besoin de toutes les informations de la
base de données en même temps, nous faisons des requêtes SQL7 précises.

Ces requêtes sont envoyées à la base de données qui répond avec un objet que nous
transformons en format Json. Celui-ci est exporté afin que l’application SPA puisse l’utiliser.

Nous avons également configuré le serveur node.js pour que celui-ci envoie ces mêmes
requêtes SQL lorsqu’il reçoit une certaine requête depuis le « Front-End ». Cette
configuration s’est faite avec la méthode POST sur une certaine URL.

La méthode GET aurait pu être utilisée, mais l’envoi de requêtes entre le « Front-End » et
le « Back-End » avec la méthode POST a été imposée par le maître de stage.

Un exemple de cette configuration sur l’URL « /ListPerson » du serveur node.js :

Figure 47 : Exemple d'export de données Back-End

On retrouve bien la méthode POST utilisée mais également l’URL sur laquelle la requête
doit être effectuée pour exécuter le code. On trouve également un tag « async » dans celui-
ci simplement pour stipuler qu’il s’exécutera de façon asynchrone.

Ensuite, si la connexion à la base de données a bien été effectuée, nous exécutons le code,
si ce n’est pas le cas, un message d’erreur, comprenant cette erreur, est envoyé à la
console. Cette erreur est plus souvent écrite dans des « log files 8».

7
	SQL	(Structured	Query	Language)	est	un	langage	de	requête	structuré.	Ces	requêtes	sont	utilisées	

pour	exploiter	des	bases	de	données	relationnelles.		
8
	 Log	 files	 :	 Fichiers	de	 logs.	Ces	 fichiers	 comprennent	des	 informations	 liées	à	 l’utilisation	d’un	

serveur.	

Wambe Thomas 40

Si l’on rentre dans le code, alors on récupère dans le corps de la requête (« req.body ») les
paramètres envoyés (nous verrons comment est constituée la requête ci-dessous).
Une fois les paramètres stockés dans leurs variables respectives, nous décrivons une
nouvelle variable (« query ») qui prendra deux paramètres : un champ texte et un champ
valeurs. Cette variable sera en fin de compte notre requête SQL.

Après ceci, un envoi de la requête SQL à la base de données est effectué (« await
pool.query(query) » et celle-ci nous envoie les informations que nous formatons en format
Json (« return res.status(200).json ». Ce texte en format Json sera stocké dans un tableau
d’objets appelé « cards » (« cards : result.rows »).

Ce tableau d’objet « cards » comprend chaque élément du « SELECT » de la requête SQL
ainsi que la valeur « salutation » présente dans la fonction « INNER JOIN » pour chaque
député.

Ce genre de configuration est effectuée autant de fois que des paquets d’informations
différentes devront être envoyées à la « Single Page Application » qui est, dans ce cas-ci,
la partie « Front-end » du projet.

Cette dernière n’est plus codée sous node.js mais bien sous Nuxt en version SPA.

3.6.2.Single	Page	Application	/	Front-End	

Le framework Tailwindcss, cité précédement, a été utilisé pour mettre en forme cette partie.

Pour récupérer des informations sur une page du côté « Front-end » depuis le serveur
Node.js également appelé « Back-end », il faut configurer l’envoi de ces requêtes citées
auparavant.

Un exemple de configuration de l’envoi de ces requêtes du coté SPA :

Figure 48 : Exemple d'import de données Front-End

Dans ce code on retrouve le champ « await » qui est en lien étroit avec le tag « async »
situé plus haut dans le code (le champ « async » non montré par facilité d’explications).

Wambe Thomas 41

On retrouve également la requête avec la méthode POST et son URL sur laquelle on doit
aller chercher les informations (cette URL correspond à celle du serveur Node.js configuré
plus haut). Cette requête contient des paramètres dans son corps et sont également
envoyés sur le côté « Back-end ».

Une configuration spécifique au niveau du serveur Node.js est nécessaire pour que la
requête soit entendue sur le bon port :

Figure 49 : configuration de l'écoute du serveur node.js

Grâce à cette configuration présente sur le serveur Node.js, celui-ci écoute les requêtes
arrivant sur ce port. Le serveur peut donc répondre aux requêtes selon les adresses
renseignées du coté « Front-End »

Ensuite, une fois la requête envoyée et sa réponse reçue avec le tableau d’objets « cards »,
déjà vu, on égale un nouveau tableau d’objet, appelé, lui aussi, « cards », présent sur le
« Front-end » à la valeur du « cards » envoyé par le serveur Node.js («
this.cards=res.data.cards »).
En cas d’erreur dans cet envoi de requête et lors de manque de réponse du serveur, un
message d’erreur, comprenant ladite erreur, est envoyé à l’écran.

Ce genre de configuration est effectuée autant de fois que des paquets d’informations
différents sont reçus sur l’une des pages de la « Single Page Application ».

Par contre, ce tableau d’objets « cards » n’est présent que sur la page sur laquelle il a été
appelé. Si nous voulons le réutiliser ailleurs sur le « Front-End », il faut passer cet objet en
paramètre de l’appel de la page ou du composant.

3.6.3.Affichage	des	cartes		

Avec ces données présentes sur la page, nous avons pu commencer à les traiter et à les
afficher. Mais comme chaque entrée (ligne) de la base de données comprend les
informations de chaque député au sein du groupe politique ECR. Nous devons donc faire
en sorte d’afficher ces personnes sous forme de cartes, et ce, dynamiquement, afin de
pouvoir ajouter, ou retirer, des députés, aisément, sans devoir changer une quantité
importante de code dans l’application.

Pour ce faire Nuxt.js, propose de créer des composants afin de pouvoir réutiliser un même
élément plusieurs fois. Les codes de ces éléments sont donc placés dans un dossier
« Composants », ce qui facilite l’appel à ces codes.

L’affichage des différentes cartes se fait par ce biais. Donc, nous avons dû créer un
composant, appelé « Card 9», qui affichera certaines des données d’un député.

9
	Il	faut	bien	différencier	le	tableau	d’objets	«	cards	»,	le	composant	«	Card	»	et	l’objet	«	card	».		

Wambe Thomas 42

Ce composant n’a pas la possibilité de lire le tableau d’objets « cards » présent sur la page.
L’appel de ce composant doit donc se faire avec un paramètre lui passant le tableau en
question.

Pour que les cartes de chaque député au sein du groupe politique ECR soient affichées,
nous avons besoin de mettre en place une boucle au niveau de l’affichage.

Le code de l’appel de ce composant :

Figure 50 : Appel du composant Card

Grâce à Nuxt.js, l’appel des composants se fait simplement en mentionnant le nom du
composant (tant que le code de celui-ci se trouve dans le dossier composant du projet).

On voit effectivement que l’instruction « v-for » est présente dans ce code. Cette instruction
Vue.js permet de faire une boucle « for ». Ce genre de boucle est une instruction commune
a bien des langages de programmation et permet de faire des itérations.
Ici, sa version « For-in » est utilisée. Elle sert simplement à faire une boucle qui parcourra
tous les éléments présents dans le tableau « cards ». Un nouvel objet « card » prendra la
valeur de l’élément suivant du tableau « cards » à chaque itération.

Ensuite, on retrouve le tag «: card = “card” » qui passe ledit objet au composant.
Et le tag « :key= “card.persid“ » qui permet de donner un identifiant unique à chaque objet
« card ».

Le champ « class », ici présent, ajoute simplement des éléments de style pour rendre
l’affichage des cartes plus agréable visuellement.

Une fois les informations de l’objet « card » passés au composant « Card », celui-ci peut
les traiter et les afficher comme nous le souhaitons.

Wambe Thomas 43

L’affichage de ces données se fait, par exemple, comme suit :

Figure 51 : Exemple d'affichage des données

Le champ « class » sert encore une fois à ajouter des éléments de style à l’affichage des
données pour les rendre plus agréables visuellement.

La balise « <p> </p> » sert simplement à dire que c’est un paragraphe.
Dans celui-ci on retrouve les champs « {{card.title}} » et « {{card.lastname}} ».
Cette façon d’écrire permet d’afficher, à l’écran, la valeur de la variable citée entre les “{{ }}“

Ici, les différentes variables ont une nomenclature spécifique. En effet celles-ci sont
relatives à l’objet initial « card ». Cet objet comprend bien des variables (on peut les
retrouver au niveau de la requête SQL). Ces variables sont donc accessibles depuis l’objet
« card » en spécifiant la variable en question. Pour afficher le titre de la personne stocké
dans l’une des cartes, nous écrirons « card.title ». Et ce pour toutes les variables se trouvant
dans « card ».

La balise « », quant à elle, n’a pas une spécificité d’utilisation. Elle sert
simplement à grouper des éléments pour qu’ils puissent, par exemple, avoir le même
attribut « class ».

La balise «
 » est une balise qui ne se ferme pas, au contraire des deux balises
précédemment citées, et intègre simplement un saut de ligne dans le texte.

Pour finaliser la carte, nous avons décidé d’ajouter une photographie du député, si nous
disposons de celle-ci. Dans ce but, chaque image disponible a été stockée au sein d’un
même dossier. Et chaque image a été renommée par le login du député.

On affiche cette photographie grâce à ce code :

Figure 52 : Affichage de la photographie du député.

Wambe Thomas 44

Cet affichage se fera grâce à la balise « ». Seulement, comme dit précédemment,
chaque député n’a pas forcément de photographie lui étant liée. Pour tester cela nous
utilisons l’instruction « v-if ».
Cette instruction permet de poser une condition sur l’affichage du bloc. Dans ce cas-ci, la
condition est la variable « card.aspicture ». Si cette variable est égale à vrai ou est
supérieure à zéro, alors le bloc sera affiché.

Si ledit député a bien une image qu’il lui est associée, alors nous allons la chercher grâce
au tag « :src ». Ce tag permet à la balise « » de savoir où aller chercher l’image.
Dans ce cas-ci, comme l’image doit être affichée dynamiquement selon le député, nous
devons intégrer une variable dans la source. C’est pour cela que la fonction « require() »
est utilisée ici.

Le tag « alt » permet de remplacer, en cas de problème d’affichage de l’image, celle-ci par
un texte prédéfini.

Nous avons décidé de faire apparaître une image par défaut si l’un des députés n’a pas de
photographie lui étant associée. Ces images par défaut étant genrées, nous avions donc
deux possibilités qui s’offraient à nous.

Soit le député était de genre féminin, donc l’image par défaut était de genre féminin.
Soit le député était de genre masculin, donc l’image par défaut était de genre masculin.

En voici le code associé :

Figure 53 : Affichage de la photographie genrée par défaut

Si la réponse du test précédent « v-if=“card.aspicture“ » est « faux » ou égal à zéro alors
l’instruction « v-else » est appelée. Ici comme un test supplémentaire est nécessaire afin
de déterminer le genre du député, ce n’est pas cette instruction qu’on a utilisée mais
l’instruction « v-else-if » qui permet de refaire un test si le précédent est non concluant.

Ce test s’effectue maintenant sur le titre de la personne. Si ce titre est « Mrs » ou « Miss »
alors l’image associée et répertoriée dans le tag « src » est l’image par défaut de genre
féminin.
Sinon l’image par défaut de genre masculin est utilisée.

Wambe Thomas 45

Un aperçu du rendu visuel de ces cartes avec les valeurs d’affichage par défaut :

Figure 54 : Aperçu des cartes

3.6.4.Page	«	détails	»	

En plus d’afficher les photographies et les informations de chaque député sur cette carte,
nous avons lié une nouvelle page, qui donnera plus de détails sur le député en question.

Pour ce faire nous avons utilisé l’outil « d’autoRouting ». Comme cette page ne comprend
pas les mêmes informations, vu que chaque carte est différente, il faut, en plus de passer
la page, passer également des paramètres. Ceux-ci permettront de différencier une carte
d’une autre et donc, un député d’un autre.

Cette redirection est faite comme suit :

Figure 55 : Navigation vers la page de détails

Nous retrouvons la balise « d’autoRouting » « NuxtLink » avec ses paramètres comme
expliqué ci-dessus. Ici on redirigera, lors du clic sur une carte, l’utilisateur vers le lien ayant
comme nom « Details ». De plus, avec le paramètre « persid », on envoie la variable
« card.persid » à la page pour afficher les informations de la bonne carte.

Une fois la page de détail appelée, celle-ci doit aller chercher, sur le serveur, des
informations complémentaires sur le député en question. Cette requête se fait comme les
précédentes. Cependant l’URL visée et les paramètres envoyés ne sont pas les mêmes.

Wambe Thomas 46

Figure 56 : Requête au serveur Node.js de la page de détails

Ici l’URL pointe toujours vers l’adresse du serveur Node.js mais sur le lien « /Details »
Le paramètre passé à cette requête est également la valeur de la variable « persid » passé
lors de la redirection via « NuxtLink ».

Du coté Node.js, la configuration est partiellement identique à celle sur l’URL
« /ListPerson ».

Figure 57 : Configuration de l'écoute de la requête /Details

Ici l’URL touchée est « /Details » et le paramètre récupéré est « persid ».

Wambe Thomas 47

La requête SQL change également. Celle-ci va aller chercher toutes les informations
(caractérisé par l’astérisque) présentes dans la base de données, pour le député ayant
comme valeur de « persid », la valeur passée.

Un aperçu du rendu visuel de cette page de détails :

Figure 58 : Aperçu de l'une des pages de détails

3.6.5.Barre	de	navigation.	

Après cela, nous avons décidé de créer un composant « NavBar » qui sera une barre de
navigation commune à la majorité des pages du site. Cette barre de navigation comprendra
le logo du groupe ECR et des boutons pour pouvoir naviguer entre les différentes pages.
Le bouton « Home » qui permettra de revenir à la page d’accueil. Le bouton « Log in / Sign
in » qui permettra de rediriger vers une page d’authentification ou de création de compte
quand celui-ci sera mis en place. Et un bouton « Log out » pour se déconnecter.

Les différentes redirections sont faites grâce à « l’autoRouting » de Nuxt.js avec les balises
« <NuxtLink> ».

La barre de navigation sera présente sur la page d’accueil et la page de détails mais
absente de la page d’authentification. Cette barre de navigation se présente comme suit :

Figure 59 : Aperçu de la barre de navigation

3.6.6.Recherche	dans	les	cartes		

Une autre fonctionnalité a été mise en place sur le site. En effet, nous avons pensé qu’une
possibilité de recherche d’un député ou d’une liste de députés par leurs nom ou prénom
pourrait être pratique.

Dans ce but nous avons dû styliser une zone d’entrée de caractères pour effectuer cette
recherche.

Figure 60 : Aperçu de la barre de recherche

Cela a été majoritairement fait grâce aux tags « class » et un import d’images sous format
« svg ».

Wambe Thomas 48

Par contre, la recherche en elle-même se fait grâce à l’appel d’une fonction.

Voici la configuration de la zone d’entrée :

Figure 61 : Configuration de la zone d'entrée

La balise <input> est une balise qui permet à l’utilisateur de saisir des données.
Le tag « placeholder » sert à afficher du texte par défaut lorsque l’utilisateur ne renseigne
rien dans la zone d’entrée.

L’instruction « v-model » permet de stocker dans une variable, ici « search », le texte saisi
dans la zone d’entrée.

Le champ « @input » est un tag d’évènement. Chaque fois que l’utilisateur va écrire
quelque chose dans la zone d’entrée, la fonction « newsearch() », déclenchée par
l’événement « @input », va être appelée.

La fonction est la suivante :

Figure 62 : Code de la fonction Mysearch

Wambe Thomas 49

Lors de l’appel de cette fonction asynchrone, une variable nommée « mysearch » est
instanciée. Ensuite, un test sur la variable « search » présente dans l’instruction « v-model »
est effectué : la variable « search » existe-t-elle ?
Si c’est le cas, cela veut dire que l’utilisateur a déjà inscrit quelque chose dans la zone de
texte. Auquel cas, ce texte est enregistré dans la nouvelle variable « mysearch ».
Si « search » n’existe pas, alors la variable « mysearch » vaudra le caractère « % »
(n’importe quel caractère ou groupe de caractères).

Ensuite, la variable « mysearch » est envoyée dans la requête au serveur Node.js comme
vu précédemment.

Sur le serveur Node.js, la variable est récupérée et est utilisée dans la requête SQL.
Voici la requête SQL en question :

Figure 63 : Requête SQL de la page d'accueil

On retrouve, dans la fonction« WHERE » une concaténation du prénom et du nom et une
fonction « ILIKE » suivit d’un « $1 » ($1 prend la valeur de la première variable présente
dans le champ « values »).
Cette ligne consiste à préciser sur quel paramètre la sélection dans la base de données va
être effectuée. Ici on peut traduire cela par : « Où “prénom + nom“ contient une suite de
caractères égale à la variable “search“ »

Par exemple si le nom et prénom sont « Mazaly Aguilar », la concaténation des deux feront
« MazalyAguilar». Si la variable « search » équivaut à toute suite de caractères qui
compose cette concaténation, alors les données de Mrs Mazaly Aguilar seront envoyées.

3.6.7.Pagination	

Au départ, un nombre fixe de cartes était affiché à l’écran. Ce nombre délibérément choisi
était 16. Ce qui permettait d’avoir quatre cartes par rangée et par colonne. Seulement, la
base de données contenant 48 députés nous ne pouvions les voir tous. Il a alors fallu mettre
en place un système de pagination. Avec cette navigation entre pages, il était souhaitable
qu’une sélection du nombre de cartes par page soit aussi mise en place.

Nous avons d’abord commencé par mettre en place quelques boutons fixes pour pouvoir
accéder à ces pages contenant différentes cartes.

Wambe Thomas 50

Figure 64 : Affichage de la pagination

L’affichage des cartes se fait sur la totalité des cartes présentes dans l’objet « cards »
envoyé par le serveur Node.js. Le serveur, lui, récupère ces cartes grâce à la requête SQL.

Il faut donc limiter la récupération des données de la requête SQL pour limiter le nombre
de cartes à l’affichage. Cette fonction se nomme « LIMIT » dans cette requête.

De plus, pour afficher les cartes à partir du deuxième lot de cartes (lorsqu’on navigue sur
la deuxième page), il faut spécifier à la requête à partir de quelle carte il commencer à les
récupérer. Cette deuxième fonction se nomme « OFFSET » dans la requête SQL.

Il faut donc agir sur la fonction « OFFSET » si on veut changer de page, celle-ci contenant
également 16 cartes. En théorie, si la première page comporte 16 cartes (de 0 à 15), alors
la deuxième commencera à « l’OFFSET » de valeur 16 et ainsi de suite avec les multiples
de 16.

Un exemple sur le bouton nommé « Previous » :

Figure 65 : code du bouton Previous et Next

Ici, la balise permet de créer une liste structurée d’éléments grâce aux balises .
Chaque bouton sera présent dans une balise afin de structurer la liste des boutons.

Une variable « offset » est créée au niveau de la page « Home » dans le « Front-end »
(code non présent sur cette image). Elle est ensuite passée au niveau du server Node.js
grâce aux requêtes HTTP. Cette variable est ensuite introduite dans la requête SQL.

Wambe Thomas 51

On retrouve à nouveau ici l’instruction « v-if » permettant de faire un test sur la valeur de
cette variable « offset ». Ce test est une vérification de sa valeur. Si elle équivaut strictement
à 0 alors le bouton est désactivé.

Sinon, un événement « @onclick » qui appellera la fonction « offsetter » est créé.
Cet événement permet, lors du clic, ici sur le bouton, d’appeler une fonction par exemple.
Ici, on passe également un paramètre à cette fonction. Ce paramètre « $event » permet de
connaître sur quel bouton l’utilisateur a appuyé. Nous reviendrons sur cette fonction plus
loin.

Ensuite, nous retrouvons une redirection vers le nom du lien « HomePage » et un attribut
« name » qui est donné à ce bouton lors de la redirection.

Le code de ce bouton est identique au code du bouton « Next ».

Par contre, en vue de passer sur un affichage dynamique de bouton, il a été préférable de
coder les boutons entre « Previous » et « Next » de façon dynamique.

Il a fallu, tout d’abord, connaître le nombre de pages qu’il y aurait sur le site. Chacune
comprenant 16 cartes par page.

Nous devions connaître le nombre total de cartes. Pour ensuite diviser ce nombre par le
nombre de cartes par page. Nous aurions ainsi notre nombre total de pages.

Le nombre total de cartes est susceptible de changer si l’un des députés devait quitter le
groupe ECR ou que de nouveaux députés venaient à être insérés dans la base de données.
Une nouvelle requête à cette base de données est donc requise afin de connaître le nombre
exact de députés.

Cette requête s’initialise d’abord du coté « Front-end » comme-suit :

Figure 66 : Code de la fonction InitPager

L’URL est celle du server Node.js sur le lien « /CountPersons ».
La réponse sera introduite dans la variable, créée au préalable, « totalPersons ». Et cette
variable est directement utilisée pour faire le calcul, expliqué ci-dessus, afin d’avoir le
nombre de pages total.

Wambe Thomas 52

Du côté serveur, la réception de la requête est identique aux autres expliquées
précédemment. Cependant, la requête SQL change énormément de ce qui a déjà été
expliqué :

Figure 67 : Requête SQL comptant le nombre de député

Ici, la fonction « SELECT COUNT() » permet de compter le nombre de lignes dans une
table. En lui spécifiant le caractère astérisque « * », nous lui demandons de compter toutes
les lignes présentes dans la table « person ». Ce résultat sera stocké dans une colonne
appelée « numPersons ».
Une fois la requête SQL effectuée, la réponse est stockée dans la variable « persons » et
est envoyée au « Front-end ».

Une fois ce nombre de pages récupéré sur la page d’accueil, l’affichage des boutons de
redirections par pages, peut se faire.
Ces boutons se font comme-suit :

Figure 68 : Affichage des boutons dynamiques

Wambe Thomas 53

On retrouve l’instruction « v-for » permettant d’afficher le nombre exact de boutons.

Un test sur la valeur de la variable « offset » est également présent. Ce test permet de
savoir si cette valeur est égale au nombre de cartes sur une page multiplié par le numéro
de la page moins 1. Avec ce test, on regarde si la page affichée n’est pas la page sur
laquelle le bouton redirige. Auquel cas, ce bouton doit être désactivé et une indication
visuelle doit être mise en place.

Si ce test n’est pas bon, alors un événement « @click » est créé. Cet événement appelle
également la fonction « offsetter() » en lui passant la variable « $event ».

Ensuite, une redirection vers la page d’accueil est effectuée et un nom est donné à ce
bouton. Son nom est donné grâce à la variable « page » présente dans l’instruction « v-
for ». Celui-ci est un nombre compris entre 1 et le nombre total de pages.

Voici le code de la fonction « offsetter() » :

Figure 69 : Code de la fonction offSetter

On retrouve, encore une fois, une fonction asynchrone.
Celle-ci reçoit un paramètre comprenant les informations relatives au bouton sur lequel
l’utilisateur a cliqué.

Cette fonction comprend trois tests qui ont pour but de donner la bonne valeur à la variable
« offset ». Ces tests sont effectués sur le nom des boutons. Il y a trois possibilités suite aux
explications données ci-haut.

La première, le nom est égal à « Prev », nom donné au bouton « Previous ». Auquel cas,
une simple soustraction du nombre de cartes par pages à la variable « offset » est opérée.
Cela nous donnera la page précédente.

Wambe Thomas 54

Deuxième cas, le nom testé est égal à « Next », le nom du bouton « Next ». Alors une
addition du nombre de cartes par pages et de la valeur de la variable « offset » est effectuée.
Cela nous affichera la page suivante.

Troisième cas, le nom est un nombre compris entre 1 et le nombre total de pages. Pour
effectuer ce test une boucle est nécessaire. On retrouve ici une instruction « for » afin de
tester tous les noms possibles dans ce cas. Si le nom du bouton cliqué est égal à l’une de
ces possibilités, la valeur de la variable « offset » sera modifiée. Cette valeur sera égale à
la valeur du bouton cliqué, diminué de 1, multiplié par le nombre de cartes par page.
Ce troisième cas nous affichera la page du bouton cliqué.

Un exemple : si le nombre de cartes par page égale 16 et que le bouton cliqué est le
troisième, le calcul est le suivant : (3-1) x 16 ce qui donne un « offset » de 32.

Pour éviter tout débordement sur la valeur de la variable « offset », une fonction
« offsetSecure() » a été mis en place.

Cette fonction a pour seul but d’égaler cette valeur à zéro lorsque celle-ci descend dans les
négatifs. Et de l’égaler à sa valeur maximale lorsque celle-ci la dépasse.

Cela se fait comme-suit :

Figure 70 : Code de la fonction offsetSecure

Lorsque la valeur de la variable « offset » est strictement inférieure à zéro, celle-ci est
égalée à zéro.

Le deuxième test doit s’effectuer lorsque la requête permettant de connaître le nombre de
députés a été envoyée (quand la valeur de totalPersons n’est plus égale à zéro). Une fois
que cela est vérifié, alors, nous testons si l’offset est strictement supérieur au nombre
maximal. Ce nombre est défini par la soustraction du nombre de cartes affichées par page
du nombre total de députés. Si ce nombre est dépassé alors la valeur de la variable
« offset » est égalée à cette valeur.

Wambe Thomas 55

Ensuite, il a fallu mettre en place la sélection du nombre de cartes par page.

Des boutons fixes ont donc été créés. Ceux-ci resteront fixes et prendront la valeur
souhaitée par le développeur. Ici, les quatre valeurs ont été choisies délibérément. Il s’agit
de 4, 8, 12 et 16 cartes par page.

Ces boutons sont codés de la même façon que pour la pagination à l’exception de la
fonction appelée « paginer() » et non « offsetter() ». Un paramètre comprenant l’événement
a été également passé à la variable.

Figure 71 : Code de la fonction paginer

Cette fonction, aussi asynchrone, permet de remettre la valeur de « l’offset » à zéro. Et
d’égaler le nombre de cartes à afficher par page à la valeur de l’id du bouton cliqué.

Il est à noter que, l’id du bouton a été au préalable égalé à la valeur du bouton.

La fonction « newsearch() » visible souvent en fin de fonction est la fonction permettant
l’envoi de la requête sur « /ListPerson » vu au point « Single Page Application / Front-End »
de ce chapitre.

Pour finaliser ce point, cette fonction « newsearch() » appelle également les fonctions
« InitPager() » et « offsetSecure() » vues précédemment, avant d’envoyer la requête au
serveur.

3.6.8.Passage	sous	Universal	Rendering	

Une fois toutes ces fonctionnalités ajoutées au site, nous pouvions le passer sous un
environnement dit Universal Rendering. Il a fallu recommencer un nouveau projet sous
Nuxt.js afin de s’assurer que celui-ci prenne bien les paramètres d’un site sous Universal
Rendering.

Dans cette configuration, le serveur Node.js est interne au projet. Le projet Nuxt.js intègre
totalement le serveur Node.js, celui-ci étant lancé en même temps que l’application. Ainsi
le « Font-End » et le « Back-end » sont lancés simultanément au sein du même projet.
L’avantage de cette configuration est qu’il n’est plus nécessaire d’avoir plusieurs URL
indépendantes entre le « Front-End » et le « Back-end ». En effet, dans la configuration
précédente, le serveur tournait, dans notre cas, sur le port 8080 de l’adresse locale de
l’ordinateur. Et la partie « SPA » tournait, quant à elle, sur le port 3000 de cette même
adresse. Avec cette nouvelle configuration, les deux parties tournent sur le même port qui
est le port 3000 de l’adresse locale de l’ordinateur utilisé.

Wambe Thomas 56

Notre configuration de l’application dans ce mode de Rendering permet également un
export des données vers l’extérieur. C’est-à-dire que les données sont également
accessibles via une adresse indépendante de la partie « SPA ». Cette exportation se fait
sur l’adresse « /api » du port 3000 de l’adresse locale. L’URL complète pour y accéder est
la suivante : http://localhost:3000/api.

Cette adresse n’est accessible que sur la machine qui héberge l’application. En production,
cette adresse ne sera plus en local mais il restera toujours « /api » en fin d’adresse.

Cette exportation vers l’extérieur se fait grâce à ce code :

Figure 72 : Exportation /api

Ici, nous pouvons renseigner l’adresse d’export de ces données en format Json.

Grâce à cet export de données, le code reste presque inchangé.

Comme l’adresse d’accès aux données a changé, nous devions également modifier
l’adresse des requêtes envoyées depuis la partie « Front-End ». Celles-ci prennent la
nomenclature suivante :

Figure 73 : Import des données /ListPerson

Figure 74 : Import des données /Details

Figure 75 : Import des données /CountPersons

Wambe Thomas 57

3.6.9.Sessions	et	cookies	

Un ajout de fonctionnalité a été proposé par le maître de stage ; il s’agit d’un système de
sessions et de cookies. Ceci permettra d’initier un système d’authentification des
utilisateurs par la suite.

Ce système se configure comme-suit :

Figure 76 : configuration des sessions et cookies

Grâce à la librairie « express-session » nous avons la possibilité d’ajouter des sessions au
sein de chaque réponse aux requêtes reçues.
Ces sessions sont également stockées dans notre base de données dans une table
s’appelant « user_sessions ».

Ces sessions permettent d’ajouter à ces réponses des cookies. Ces cookies nous donnent,
notamment, la possibilité de donner une date d’expiration à ces sessions.

L'avantage des sessions est qu'elles permettent une persistance de l'information propre à
cet utilisateur, à cette session, côté serveur. Le web étant par définition « stateless » (sans
état), cette persistance n'est pas possible sans session.

Wambe Thomas 58

3.6.10.Site	complet	

La page d’accueil du site, avec tous ces ajouts, ressemble actuellement à ceci :

Figure 77 : affichage de la page d'accueil au complet

Lors du clic sur l’une des cartes, la page de détails s’affiche comme suit :

Figure 78 : Affichage de la page de détails au complet

Et lors de l’accès à la page de connexion, cette page, ci-dessous, s’affichera :

Figure 79 : Affichage de la page statique de connexion

Wambe Thomas 59

3.7.Alternatives		

Des alternatives à l’utilisation de Nuxt.js sont disponibles tel que Next.js, Nestjs, …

Next.js est la version « Universal » de la bibliothèque « React ». Ce framework est créé par
« Vercel » avec l’aide de Google et de Facebook. Next.js est utilisé par de célèbres sites
tel que Netflix, Nike, TikTok, … La liste n’est, bien sûr, pas exhaustive.

Nestjs est la version « Universal » de la bibliothèque Angular. Ce framework est créé par
Google. Nestjs est utilisé par de célèbres sites tel que Adidas, Autodesk, Décathlon, … La
liste n’est, là non plus, non exhaustive.

Toutes ces alternatives ont leurs avantages et leurs inconvénients. Mais le choix de Nuxt.js
fut imposé par le maître de stage. La question de quel framework utiliser ne s’est pas posée.

4.Conclusion	

En conclusion, lors de ce stage, j’ai dû approfondir des concepts techniques déjà vus lors
de ma formation, m’intéresser à d’autres concepts techniques non vus et les étudier afin de
les mettre en pratique. Enfin, apprendre à utiliser une nouvelle technologie, Nuxt.js, dont
les avantages sont indéniables.

L’objectif initial de ce stage a été atteint. C’est-à-dire, réaliser un POC (proof of concept)
sur base d’une application ayant pour vocation de montrer la faisabilité et l’efficacité de
cette nouvelle technologie.

Le serveur Node.js est effectivement intégré à Nuxt.js et est efficace dans le cadre de ce
projet.

Cette technologie a permis de récupérer le code d’origine d’une application sous Vue.js
réalisé au préalable par mes soins et de l’implémenter dans sa version finale sous Nuxt.js.

Ce stage m’a également permis de développer des compétences non techniques
importantes pour la gestion de tout projet. En effet, la situation sanitaire m’ayant obligé à
travailler à distance, il a fallu mettre en place une organisation rigoureuse pour garantir le
bon déroulement de cette expérience professionnelle particulière.

De plus, de fréquentes interactions ont été nécessaires afin de s’assurer que le travail
réalisé corresponde aux attentes des personnes impliquées.

Au final, ce stage m’aura permis d’avoir un aperçu des défis qui m’attendent à l’avenir.
Grâce à ma formation technique, je suis confiant en mes capacités à y faire face.

 	

Wambe Thomas 60

5.Médiagraphie	

Abgrall, F. (s.d.). Demystifying SSR, CSR, universal and static rendering with animations.

Consulté en Mai 2021, sur Dev.to: https://dev.to/kefranabg/demystifying-ssr-csr-
universal-and-static-rendering-with-animations-m7d

Alves, R. (s.d.). What Is a Single Page Application (SPA)? Consulté en Mai 2021, sur

Outsystems: https://www.outsystems.com/blog/posts/single-page-
application/?utm_source=google&utm_medium=cpc&utm_campaign=Awareness_
G_GBL_Search&utm_term=single%20page%20application&utm_content=awaren
ess&gclid=CjwKCAjwnPOEBhA0EiwA609RecQ2Pe4WKeLshvbLJB6WcfQ6XSzTf
61uUeSh6ud7UvysIgT07n7lAxoCjQUQAvD_BwE

Barnard, J. (s.d.). Qu’est-ce que le SEO ? Consulté le Mai 2021, sur SemRush Blog:

https://fr.semrush.com/blog/definition-seo-guide-2020-
debutants/?kw=&cmp=FR_SRCH_DSA_Blog_Core_BU_FR&label=dsa_pagefeed
&Network=g&Device=c&utm_content=486542000146&kwid=aud-
296306606820:dsa-
1100351999444&cmpid=11849486850&agpid=113156852777&BU=Cor

FreeCodeCamp. (s.d.). Client-side vs. server-side rendering: why it’s not all black and white.

Consulté en Mai 2021, sur FreeCodeCamp:
https://www.freecodecamp.org/news/what-exactly-is-client-side-rendering-and-
hows-it-different-from-server-side-rendering-bd5c786b340d/

httpbin.org. (s.d.). httpbin.org. Consulté le Mai 2021, sur httpbin.org: http://httpbin.org/
Malekal.com. (s.d.). QU’EST-CE QUE JAVASCRIPT. Consulté en Mai 2021, sur

Malekal.com: https://www.malekal.com/javascript/

Mozilla. (s.d.). HTTP request methods . Consulté en Mai 2021, sur MDN WebDocs:

https://developer.mozilla.org/fr/docs/Web/HTTP/Methods

NodeSource. (s.d.). Choosing the right Node.js Framework: Next, Nuxt, Nest? Consulté en

Mai 2021, sur The NodeSource Blog: https://nodesource.com/blog/next-nuxt-nest/

Omoyeni, T. (s.d.). Differences Between Static Generated Sites And Server-Side Rendered

Apps. Consulté en Mai 2021, sur Smaching Magazine:
https://www.smashingmagazine.com/2020/07/differences-static-generated-sites-
server-side-rendered-apps/

Osmani, J. M. (s.d.). Rendering on the web. Consulté en Mai 2021, sur Developpers google:

https://developers.google.com/web/updates/2019/02/rendering-on-the-web

Parlement européen. (s.d.). Qu’est-ce que le Parlement européen? Consulté en Mai , 2021,

sur Le Parlement européen: https://www.europarl.europa.eu/news/fr/faq/16/qu-est-
ce-que-le-parlement-europeen

SEO.fr. (s.d.). Définition du SEO (Search Engine Optimisation). Consulté en Mai 2021, sur

SEO.FR: https://www.seo.fr/definition/seo-definition

Wambe Thomas 61

Toute l'Europe. (s.d.). Consulté en Mai 2021, sur Toute l'Europe:
https://www.touteleurope.eu/fileadmin/_processed_/3/2/Screenshot_2019-07-
02_Accueil_Resultats_des_elections_europeennes_2019_Parlement_europeen-
04856b33fd.png

Wikipédia. (s.d.). Ajax (informatique). Consulté en Mai 2021, sur Wikipédia:

https://fr.wikipedia.org/wiki/Ajax_(informatique)

Wikipédia. (s.d.). Conservateurs et réformistes européens. Consulté en Mai 2021, sur

Wikipédia: https://fr.wikipedia.org/wiki/Conservateurs_et_réformistes_européens

Wikipédia. (s.d.). Document Object Model. Consulté en Mai 2021, sur Wikipédia:

https://fr.wikipedia.org/wiki/Document_Object_Model

Wikipédia. (s.d.). Hypertext Transfer Protocol. Consulté en Mai 2021, sur Wikipédia:

https://fr.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Wikipédia. (s.d.). Institutions de l'Union européenne. Consulté en Mai 2021, sur Wikipédia:

https://fr.wikipedia.org/wiki/Institutions_de_l%27Union_européenne

Wikipédia. (s.d.). Nuxt.js. Consulté en Mai 2021, sur Wikipédia:

https://fr.wikipedia.org/wiki/Nuxt.js

Wikipédia. (s.d.). Optimisation pour les moteurs de recherche. Consulté en Mai 2021, sur

Wikipédia:
https://fr.wikipedia.org/wiki/Optimisation_pour_les_moteurs_de_recherche

 62

6.Lexique	
A	
B	

Browser : Navigateur internet.
C	

C.S.R : Rendu côté client
CSS : Langage de styles.

D	
E	

E.C.R : Groupe des Conservateurs et Réformistes européens
Eurozone : Les états membres qui ont adopté l’euro comme monnaie officielle

F	
G	
H	

HTML : Langage de balises
HTTP : Hypertext Transfer Protocol

I	
I.D : Groupe « Identité et Démocratie »

J	
JSON : JavaScript Object Notation

K	
L	

La Gauche : Groupe de la Gauche au parlement européen
M	
N	
O	

O.D.S : Parti Démocratique Civique
P	

P.E : Parlement européen
P.P.E : Groupe du Parti Populaire Européen
P.P.E-D.E : Parti Populaire Européen et des Démocrates Européens

Q	
R	

Renew : Renew Europe Group
S	

S&D : Groupe de l’Alliance Progressiste des Socialistes et Démocrates au Parlement
européen
S.P.A : Application à page unique
S.S.R : Rendu côté serveur

T	
U	

U.E : Union européenne

 63

URL : Uniform Resource Locator
V	

Verts/ALE : Groupe des Verts/Alliance Libre Européenne
W	
X	
Y	

 64

7.Annexes	

Figure 6 : Exemple de requête GET via Telnet

 65

Figure 7 : Exemple de requête HEAD via telnet

 66

Figure 8: Exemple de requête POST via Telnet

 67

Figure 18 : Schéma Static Rendering

 68

Figure 22 : Schéma Server Side Rendering

 69

Figure 28 : Schéma Client Side Rendering 1

 70

Figure 29 : Schéma Client Side Rendering 2

 71

Figure 37 : Schéma Universal Rendering 1

 72

Figure 37 : Schéma Universal Rendering 2

